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Abstract: ET++ is a homogeneous object-oriented class library integrating user interface building
blocks, basic data structures, and support for object input/output with high level application
framework components. The main goals in designing ET++ have been the desire to substantially ease
the building of highly interactive applications with consistent user interfaces following the well
known desktop metaphor, and to combine all ET++ classes into a seamless system structure.
Experience has proven that writing a complex application based on ET++ can result in a reduction in
source code size of 80% and more compared to the same software written on top of a conventional
graphic toolbox. ET++ is implemented in C++ and runs under UNIX™ and either SunWindows™,
NeWS™, or the X11 window system. This paper discusses the design and implementation of ET++. It
also reports key experience from working with C++ and ET++. A description of code browsing and
object inspection tools for ET++ is included as well. ET++ is available in the public domain.2
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1 Introduction
Making computers easier to use is one of the reasons for the current interest in interactive and
graphical user interfaces that present information as pictures instead of text and numbers. They are
easy to learn and fun to use. Constructing such interfaces, on the other hand, often requires
considerable effort because they must not only provide the functionality of conventional programs, but
also have to show data as well as manipulation concepts in a pictorial way. Handling user commands
from input devices such as a mouse or a keyboard in order to build an event driven application
complicates the programmer's task even more.

Much of the user-friendliness of applications comes not only from an iconic user interface but also
from a uniform user interface across applications. This leads to a significant amount of development
redundancy because most of the code required by the user interface has to be reengineered for every
new application.

1 Reprinted from Structured Programming, Vol. 10, No. 2, 1989.  ©1989 Springer-Verlag New York Inc.
2 The ET++ project was partially supported by the Swiss National Science Foundation.
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A first solution to reduce this complexity has been the invention of so called toolboxes, rich
collections of library functions that implement the low-level components of the user interface like
windows, menus, and scrollbars. The toolbox may be part of the system software for a particular
computer or of specific window system software. The biggest problem of most conventional toolboxes
is their lack of flexibility and extensibility paired with a considerable overall complexity. Quite
likely, it is not possible to upgrade their functionality or to add new components without modifying or
duplicating source code.

Recent toolbox implementations like the xt toolbox for the X window system [Rao87] and atk for the
Andrew system [Pal88] use object-oriented programming to improve flexibility and extensibility by
dynamic binding and inheritance. But even the functionality of these toolboxes is inadequate for
substantially easing the application building process.

Much of a typical application's main program built on top of a toolbox is merely program “glue”
that manages the calling of toolbox subroutines or, in object-oriented toolboxes, the message passing
between objects. The major drawback of the toolbox approach is that it does not define an overall
structure for an application. This application structure is therefore often given as a program skeleton
that can be copied and modified to fit the application's requirements. But skeletons are not the optimal
solution because they duplicate code which should go into a library and because they make the
application code more complex and less manageable.

A promising solution is that of an (object-oriented) application framework that defines much of an
application's standard user interface, behaviour, and operating environment so that the programmer
can concentrate on implementing the application specific parts.

Prominent examples for application frameworks are Smalltalk-80 for the Smalltalk user
interface, the Lisa Toolkit [Wil84] for the Lisa, and MacApp [Sch86, Ros86] for the Macintosh user
interface [App88].

An application framework allows reusing the abstract design of an entire application, modelling
each major component with an abstract class [Joh88]. In a graphical application, for example, these
components are documents, windows, commands, and the application itself.

While the framework approach is useful for the development of any software, it is especially
attractive if a standard user interface should be encouraged, for it is possible to completely define the
components that implement this standard and to provide these reusable components as building blocks
to other developers. This is an advantage over the toolbox approach where user interface “look-and-
feel” standards are explained textually rather than being “wired” into the software.

A User Interface Management System (UIMS) is an alternative approach which has attempted a
strong separation of application components and user interface components. This allows developing and
changing each part independently of the others and also is the foundation for multiple interfaces for the
same application. UIMSs are well suited for applications dealing with simple interaction only. But
direct manipulation interfaces, for example in a graphic editor, require that semantic information be
used extensively for controlling feedback, which is in contrast to the initial goal of strongly separating
application and user interface parts. As a consequence, current UIMSs are typically fairly limited in
the types of interfaces they support [Mye87].

This article presents the design, architecture, and construction of ET++, an object-oriented
application framework implemented in C++ for a UNIX environment and various standard window
systems.

ET++ combines the functionality of MacApp II [Bia88] with an object-oriented library of user
interface components. In addition, ET++ contains many data structures that are not only useful for the
implementation of the user interface part, but for the application part as well. All system
dependencies are encapsulated in abstract classes. This allows easy porting of the system to another
environment.
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Providing a class library with such a rich functionality as ET++ considerably increases the
learning time of novice users to exploit its full functionality. This becomes particularly evident with
deep class hierarchies where many programmers have trouble grasping all the inherited behaviour of
a subclass. To tackle this problem a programming environment is integrated into ET++.

2 An Example of an ET++ Application

Figure 1. An Example of an ET++ Application.

Figure 1 shows a screen dump of ET++Draw in order to give an idea of what kind of applications ET++
supports. ET++Draw is a drawing program similar in functionality to MacDraw™. The main
difference is that the implementation of ET++Draw required some 4000 lines of code whereas the
implementation of MacDraw based on the Macintosh Toolbox required almost 8 times as much. The
following list highlights some tasks ET++ takes care of without any special effort by the programmer
when building applications such as ET++Draw:

– concurrent editing of several drawings in several windows,

– moving, stacking, and resizing of windows,

– scrolling of the window contents (including auto scrolling and real-time scrolling),

– displaying disconnected portions of the drawing by using several panes,

– file and dialog management for loading and storing a document,

– flicker-free screen update based on double buffering, and

– device independent hardcopy output of the drawing, for example in PostScript™.

– As a benevolent side-effect of the abstract system interface instantiated to a real one at run-time,
the application runs on all window systems supported by ET++ without recompilation.
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Other parts of the implementation that are not handled automatically but are supported by components
of ET++ include:

– data structures underlying the draw application (lists, sets, dictionaries, etc.),

– input/output of the data structures used in the application (even data structures containing cycles,
because ET++Draw supports arbitrary visual connections between shapes,

– undoable commands,

– support for transferring a selection of shapes to the clipboard or to duplicate any shapes, a feature
which substantially simplifies the implementation of undoable commands),

– layout of a group of graphical objects, for example in dialog boxes, and

– feedback for operations like dragging objects (this mechanism is not based on inherently non-
portable XOR raster operations).

3 Design Principles of ET++
The designer of a class hierarchy working with C++ has to choose between a single rooted or a forest
approach for structuring the class library. In a single rooted library such as known from Smalltalk-
80, all classes are derived from a common root class. In the forest approach as used in l ibg++
[Lea88], the library consists of a collection of almost independent classes. For ET++ a single rooted
approach was chosen because the resulting system is more homogeneous and provides some valuable
basic functionality inherited by all classes.3
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Figure 2. Excerpt of the ET++ Class Hierarchy.

Deriving all classes from a common root class has never been observed to result in increased
overhead of ET++ applications. As can be seen in Figure 2, the only classes not derived from Object
are the classes modelling the system interface of ET++. The ET++ architecture is the result of several
design and redesign cycles. Reorganizing the class hierarchy was a common activity during the
evolution of ET++. Intermediate designs of ET++ were always verified with existing applications. The
principle of Promotion of Structure [Ste86] was often applied during the evolution of ET++, i.e.

3 C++ does not support a complete single root approach as in Smalltalk-80 because built-in types are not
classes and are therefore not part of the class hierarchy.
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methods were moved up in the class hierarchy in order to increase the sharing of code. The structure
of the final class hierarchy is rather deep, some metrics are given in section 10.

AbstractClassOfDialogComponents
   Button
   Slider
   CollectionOf

Figure 3. Introducing Recursion.

Another ET++ design goal is derived from the Smalltalk philosophy [Ing83]: “Choose a small
number of general principles and apply them uniformly.” The implementation of ET++ is based on a
small set of basic mechanisms. The introduction of recursion follows the same principle. In object-
oriented systems recursion can be introduced by using inheritance as illustrated in Figure 3. This
paper employs the convention of indenting class names for presenting subclass relationships.

This example illustrates how primitive dialog components can be combined to implement more
complex composite items. Primitive components and composites can then be freely exchanged.

Another Smalltalk-80 influence is the so-called Model-View-Controller (MVC) paradigm [Kra81] .
The MVC paradigm is an approach to modularize the structure of a user interface. MVC strictly
separates interactive behaviour of an application from the underlying data structure (model). The
interactive behaviour is split into rendering a data structure (view) and reacting on user input
(controller). The MVC paradigm was used in ET++ primarily where different implementations of a
data structure (model) should have the same interactive behaviour. Our experience has shown that it
is not convenient to apply MVC everywhere. Using MVC to implement a menu composed of several menu
items, for example, is more of a nuisance than a help. The data structure of menus is so simple that a
separation into a view and a model does not improve modularity.

The ET++ class hierarchy and the ET++ programming environment are strongly influenced by the
design of the Smalltalk-80 system. The primary reason why the ET++ work was not built directly
upon Smalltalk-80 is that a more evolutionary approach to object-oriented systems as stated in Cox
[Cox86] was preferred. From a software engineering point of view, a major drawback of Smalltalk-
80 is the lack of strong static type checking as found in languages like C++ or Eiffel™ [Mey88].

In a language with strong static type checking, the programmer can define in a type declaration
which operations are allowed on a variable. This mechanism al lows control of how restricted a
variable is for a specific algorithm. In ET++ instance variables or method arguments are always
declared as a class (type) that is as high as possible in the class hierarchy. The optimum is reached
when this is an abstract class. Applying this rule consequently results in algorithms being independent
of a specific implementation of a class. A further result is that implementations of an abstraction can
be exchanged with minimal effort.

Another consideration during the design of ET++ was the idea of a narrow inheritance interface of a
class. Behaviour that is spread over several methods in a class should be based on a minimal set of
dynamically bound methods. This allows a client deriving from an existing class to override just a few
methods in order to adapt its behaviour. Not adhering to the narrow inheritance principle often means
that too many methods have to be overridden resulting in ugly and bulky code.



9-6

4 Architectural Overview
The backbone of the ET++ architecture is a class hierarchy with about 234 classes and a small device
dependent layer mainly mapping an abstract window and operating system interface to an underlying
real system (Figure 4).

OS (UNIX)

Application
Framework
Classes

Graphical
Building
Blocks

Basic Building Blocks

ET++
Class
Hierarchy

Interface Layer

Window System

abstract OS Interface abstract WS Interface

Programming Environment

Figure 4. ET++ Architecture.

The Basic Building Blocks contain the most important abstract classes of the ET++ class hierarchy:
the class Object , the root of the overall class hierarchy, implements the common behaviour for all
ET++ classes; the class VObject  (visual object) implements the common behaviour for all graphical
classes. In addition, the Basic Building Blocks define general useful basic data structures, like arrays,
lists, sets etc. which are used heavily for the implementation of ET++ itself.

Application classes are high level abstract classes that factor out the common control structure of
applications running in a graphic environment. They define the abstract model of a typical ET++
application and together form a generic ET++ application.

The Graphic Building Blocks contain all the graphical and interactive components found in almost
every user interface toolbox, such as menus, dialogs, or scrollbars. In addition, it defines the
framework to easily build new components from existing ones.

The System Interface Layer provides its own hierarchy of abstract classes for operating system
services, window management, input handling, and drawing on various devices. Subclasses exist for
implementing the system interface layer's functionality for various window systems and the UNIX
operating system.

The Programming Environment part of the ET++ system is in fact a set of small ET++ applications
which are automatically included in every ET++ application. They implement tools for inspecting the
running application and browsing through its source code to help the developer understand the
program.
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5 Basic Building Blocks

5.1 The Class Object

The ET++ class hierarchy is single rooted and most classes are derived from the class Object . Object
defines abstract methods for comparing objects and for object input/output to name just two.

The object input/output facility of ET++ supports the transfer of arbitrarily complex dynamic
structures from an external medium to memory and vice versa. This functionality is based on the
abstract methods PrintOn  and ReadFrom , which are overridden in subclasses to store and read an
object's instance variables. The power of the ET++ object input/output facility lies in the fact that the
programmer does not have to distinguish between transmitting a pointer to an Object  and an ordinary
scalar typed variable. Moreover, circular structures are linearized transparently to the programmer.
Storing pointers is internally implemented by a map per class which assigns a unique identifier to



9-8

each transmitted instance (Figure 5). This identifier can be transferred to other address spaces or to
disk.4

Instance Map of Shape

Shape1

•

Point(10,20)

Shape2

Point(30,20)

#1
#2
#3

{Shape #1
    {Point 10 20}
    {Shape #2
        {Point 30 20}
        {Shape #1}
    }
}

Output of Shape1.PrintOn:

Figure 5. Object Input/Output of a Circular Structure.

Object input/output needs some information about the type of an object at run time, because not
only the state of an object but also its corresponding class have to be transmitted. ET++ run-time
support would even provide enough information about an object's instance variables to implement the
PrintOn  and ReadFrom  methods generically in the class Object  (similar to Objective-C™). But we
preferred the approach of a programmer selectively deciding which instance variables should be
written to disk. Instance variables caching some state of an object that can easily be reconstructed in
the ReadFrom  method do not even have to be transferred to disk. In [Gor87] Gorlen gives the example
of a hash table that compacts itself, i.e. ignores empty slots, when it is saved.

The case of encountering an unknown class while reading back an object structure leads to the
discussion of dynamic linking. To handle this case gracefully ET++ includes a mechanism to load a new
class and link it to a running application. The implementation of dynamic linking in ET++ exploits the
virtual function mechanism of C++ to provide type-safe incremental linking as described in [Str87].
This dynamic linking support can be further used to extend a running system. In the ET++Draw
application, e.g., a new kind of shape could be implemented and incrementally linked while the
application is running.

The object input/output facility together with the flexible stream classes of C++ allowed the
implementation of a generic DeepClone  method for objects in the class Object :5 The stream classes
(the C++ standard classes for input/output) support object transfer not only to disk files but also to a
buffer in memory. To do so, the PrintOn  method is simply invoked to write an object to a dynamically
growing buffer in memory; it is followed by ReadFrom , which creates the duplicate object by reading
the buffer. Experience with ET++ has shown that the DeepClone  method is hardly ever overridden in
subclasses.

The object input/output facility is also used as the standard format to transfer an object to the clip-
board. The transparent integration of dynamic linking into the object input/output mechanism allows
the copying of instances of classes from the clipboard that are not known in the running application.

4 It is interesting to see that a pointer does not identify an object uniquely because an object can be deleted
after a transfer and another one allocated at the same address. Consequently, some precautions have to be
taken to handle this case properly, otherwise the same identifier would be assigned for different objects.
5 A deep clone of an object consists of its instance variables plus a deep clone of all objects referenced by
it.
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Another general mechanism provided by Object  is change propagation. The basic idea is to give
some support to the synchronization of objects, for example, a model with its associated view in an
MVC-design. Providing this mechanism at the root class of ET++ allows the synchronization of
completely independent objects. Change propagation is modeled after Smalltalk-80's support for
dependencies [Gol83]. There is a method of registering an object as dependent on another object.
Modifications of the state of an object are announced with a Changed  method, triggering a call of the
Update  method for all dependent objects. To react to a change notification, this Update  method has to
be overridden. Change propagation has proved to be a very useful mechanism and is not only used in
MVC-designs. ET++Draw, for example, uses change propagation to maintain visible connections
between arbitrary graphical elements. Another good example is an inspector tool used to view the
current state of an object. Based on change propagation, the inspector can easily update the display
whenever the object changes without the inspected object having to know anything about the inspector
or the fact that it is currently being inspected.

In conjunction with object input/output, whether a transferred object's dependents should also be
output or not has to be decided. Including all the dependents in the transfer has the disadvantage that a
lot of non-persistent objects like an MVC view are needlessly output. Consequently, the class Object
provides a hook allowing the filtering out of dependencies that should not be transferred.

5.2 Container Classes

The basic building blocks of ET++ include abstract data types often referred to as container classes.
Included are ObjList (linked lists), OrderedCollection  (dynamically growing arrays), Set  (hash
tables), and Dictionary  to name a few. They are modeled after the Smalltalk collection classes. ET++
still lacks a general class for strings, because we still could not find a consensus about its interface.
Albeit some extended library functions for string handling are included in ET++.

5.3 Dynamic Type Checking

The container classes all deal with any instance derived from the class Object  which excludes more
specific type checking at compile time. Their implementation has, therefore, to build upon some kind
of run-time type checking, eg. an IsKindOf  method testing the class of an object. In order to perform
an equality operation, e.g., it is necessary to dynamically test the types of the objects for
compatibility. Depending on the type of an object to perform an operation is considered bad practice in
object-oriented systems, but this example illustrates that it cannot be completely avoided in the
container class approach followed in ET++.

Parameterized types are an alternative approach allowing more type checking at compile time. C++
currently has no parameterized types but offers only a “poor man's” version thereof based on macros.
For this reason the approach relying on dynamic type checking was preferred.

5.4 Robust Iterators

Container classes require a mechanism often referred to as iterators [Lis86] to inspect their elements
one by one. One way to implement iterators is to store the state of the traversal in the container class
itself. The disadvantage of this approach is that only one iterator can be active for an instance of a
container class at any time. For this reason ET++ implements a companion class for each container
class storing the traversal's state in instances of it. This approach allows several active iterators at
the same time.

A problem that has to be considered is what happens when the underlying col lection of objects is
modified during a traversal. CLU[Lis86], a language with built-in support for iterators, requires that
while an iterator is active the collection should not be modified. It is up to the implementor of an
iterator to handle this case properly. This restriction cannot be enforced when working with an
application framework because a lot of the control-flow resides in the framework. A client can hardly
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decide whether at a certain point an iterator is active and whether it is secure to remove an object
from a collection. ET++ container classes take care of this problem by introducing robust iterators.
The basic idea is that deletion of an object is delayed until no more iterators are active. Due to this
kind of iterator some hidden bugs and memory leaks have been eliminated from ET++. Their
implementation profited from the fact that a lot of the code has been factored out and realized in the
common superclass of all container classes (Collection ).

5.5 Run-Time Support for C++ (Metaclasses)

One problem of C++ is that its run-time system does not provide any information about the class
structure or the instance variables of an object. Consequently, an additional mechanism has to be
introduced to gather this information in order to support an IsKindOf  method and for the object
input/output facility.

ET++ uses the approach of associating with each class a special object describing its structure.
These descriptors are instances of the class Class  which is itself a subclass of Object . In analogy to
Smalltalk-80, they are called metaclasses (strictly speaking this is a misnomer because these
descriptors are not classes but only instances).

Because the C++ run-time system gives no access to type and structure information, it cannot be
circumvented that the programmer has to provide some of this information manually. Nevertheless the
principle “do not bother the programmer” was always a consideration in designing the metaclass
mechanism. For this reason, preprocessor macros extract as much as possible automatically from the
source code. See [Gam89] for a more detailed description of this approach.

Metaclasses store the following information about a class:

– the associated superclass,

– the name of the class,

– the size of an instance in bytes,

– the types of its instance variables, and

– a source code reference to the definition and implementation part of the class.

In the current version of metaclasses only a list of the instance variables' types has to be provided
manually, the rest is extracted automatically. The types of the instance variables and the source code
reference were introduced in order to give support for the ET++ programming environment.

5.6 Graphical Foundation Classes

VObject  (visual object) is the most general graphical class in ET++ and, in this respect, corresponds
to the class Object  in the overall class hierarchy. It defines an abstract protocol for managing the size
of graphical shapes, for input handling, and for drawing graphical shapes on the screen.

The relatively complex interface of VObject  mirrors the fact that it should be possible to design all
high-level algorithms dealing with graphical objects in terms of the abstract protocol of VObject
alone. This approach automatically results in the algorithms working on any kind of graphical object.
VObject , as an example, in addition to its origin and extent, defines the abstract protocol to maintain a
baseline, which is essential for the alignment of VObjects  representing text.

Most of the interface of VObject  are simple utilities which are implemented in terms of a few
dynamically bound methods. In order to create a new subclass, it is only necessary to override a small
number of methods. VObject  provides quite a number of methods to change its origin and extent or the
x or y component thereof (SetExtent , SetOrigin , SetContentRect , SetWidth , SetHeight , Align ,
and Move). It would be a pain had all these methods to be overridden in every subclass. But with the
narrow inheritance interface it is in fact only necessary to override SetOrigin  and SetExtent .
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Besides its rendering on the screen every graphical object must include a mechanism to react to
input events. VObject  defines methods for various input events like key and mouse button presses
which are called when the corresponding input event occurs. In order to react to a specific event, the
corresponding method must be overridden. The default implementation of these methods is to propagate
the event to another VObject  referenced by an instance variable.

A design goal for VObjects  was to keep them small and lightweight. This means that VObjects  have
very little space or performance overhead even when using thousands of them (for example as cells of
a spreadsheet). Consequently, VObjects  have no built-in coordinate transformation and establish no
clipping boundary, which makes it unnecessary to base their internal implementation on the clipping
machinery of an underlying window system. Our experience shows that this is rather an asset than a
burden because most of the simple graphical objects (e.g. the items in a menu or buttons) do not need a
clipping boundary anyway and take no profit from having their own coordinate system.

An interesting mechanism of the graphical foundation classes is their ability to combine several
VObjects  (e.g. a Collection) into a single, composite object which can be treated as one VObject.
The abstract class CompositeVObject  applies methods executed on itself to all of its components and
forwards input events to one of them. The layout management of composite VObjects  is the re-
sponsibility of a subclass. With the introduction of the CompositeVObject , VObjects  are most easily
arranged in a tree-like fashion which allows a reasonable default implementation of all event handling
methods: the event is propagated through its container VObject  upward to the root of the tree.

Composite-
VObjects

Clipper

VObjects

Figure 6. A Hierarchy of Nested Clippers.

The class Clipper6 is a subclass of VObject . It defines an independent coordinate system and clips
the graphical output of a VObject  to a rectangular area. It is kind of a “hole” through which another
VObject  or a part of it can be seen and scrolled. The implementation of scrolling is based on this class.
Because a Clipper  is a subclass of a VObject , a Clipper  can again be installed within a Clipper . This
results in the concept of hierarchies of independently scrollable VObjects  nested to arbitrary depth
(Figure 6). An application for this will be given later in the general discussion of the graphic
building blocks.

6 In earlier papers on ET++ (e.g. [Wei88]) Clipper  was called ViewFrame.
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6 Application Framework Classes
The most important principle embodied in an application framework is to express an abstract design
for a particular kind of application with a collection of abstract classes. These classes define the
application's natural components and how they interact. This interaction is the main difference
between an application framework and a collection of abstract but not strongly related classes. The
former allows the factoring out of much of the control flow into the class library, while the latter
requires that the developer know exactly when to call which method.

Because ET++ was designed for the same kind of highly interactive applications as those known
from the Macintosh, the natural components of typical ET++ applications are not too different from
those of the Macintosh. The classes Application , Document , View , and Command  are basically derived
from MacApp [Sch86] and therefore have a similar behaviour and similar interfaces.

An abstract ET++ application consists of a single instance of the class Application  which controls
the application as a whole and manages any number of Doc uments .

A Document  is another abstract class that encapsulates the data structure or the model of an
application and “knows” how to open and close documents (e.g. files) and how to save them on disk. The
implementation of opening and closing documents is a very good example of factoring out the common
control flow: consider, for example, an end user who intends to open a new file without saving the old
modified file to disk. The abstract class Document manages all necessary dialogs to ask the user if and
where to save the old file and what file to open next.

The main task of graphical applications is rendering the document's data structures on the screen.
VObjects  or subclasses thereof are the basic components for implementing the entities of the model as
graphical elements.

In addition, interactive applications have the notion of a current selection on which some operation
triggered by the user will be performed. The class View , another subclass of VObject , represents an
abstract and possibly arbitrarily large drawing surface. Its main purpose is to factor out all control
flow necessary to manage rendering and printing as well as maintaining a current selection. A
Document  can have any number of Views , all showing the same model in various representations. This
closely corresponds to the MVC model of Smalltalk.

The application framework class Window  defines the standard user interface of an ET++ window and
implements window-related methods like moving, resizing, and closing. It also implements the
mechanism to ease and optimize the screen update.

It is sometimes hard to determine when it is necessary to redraw an object in order to update its
image on the screen in response to changes in its internal state. This is due to the fact that visual
objects may be obscured partly or completely by other objects which have to be redrawn as well. The
ET++ application framework makes use of an indirect drawing scheme which makes it completely
unnecessary to call the Draw  method of a VObject  directly because all control flow is factored out into
the class library. An ET++ application simply announces which objects must be redrawn by calling a
method which adds the region occupied by the object to a single update region per window. Whenever
ET++ is idle, it requests the application to redraw the update region. Because invalidation is cheap and
redrawing expensive, this delayed update mechanism optimizes the redrawing on the screen without
further help from the application.

Since redrawing is completely under the control of the framework, it is possible to integrate
further optimizations that are transparent to the application. Double buffering, for example, provides
for flicker free screen update by collecting the output of a sequence of drawing requests in a memory
(shadow) buffer, which is copied to the screen in a single operation. This substantially simplifies the
implementation of the text handling classes because it is no longer necessary to minimize the update
region by sophisticated incremental strategies.
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Figure 7 shows an example (snapshot) of the dynamic relationship between instances of the
application framework classes for an application with two open documents. Each arrow denotes a
reference to another object. Most relations are automatically built and maintained by ET++.

A very important issue of user friendly applications are undoable commands because they allow
novice users to explore applications without the risk of losing data. Implementing undoable commands,
unfortunately, is a pain unless there is some support from a framework. One approach for their
implementation is to collect enough state before executing the command in order to be able to reverse
its effect when the user selects “undo”. For a single level “undo” this state can be discarded whenever
the next command is performed. Clearly, it is very difficult to build a totally automatic but efficient
framework for undoable commands without further support by the programmer. But it is possible to
design a framework that factors out the flow of control, leaving only the decisions regarding what state
to save and how to “do” and “undo” a command to the programmer.

Application

Document Document

View View View

Clipper Clipper Clipper

Window Window

Clipper

handles

shows

contains

clips

Figure 7. Links between Application Classes at Run Time.

The abstract class Command  defines the protocol while the class Document  implements the control
flow for dealing with a Command  object. To implement an undoable command, a subclass of Command  has
to be derived. Such a subclass defines the necessary state variables and methods for doing and undoing
the command. ET++ applications never perform commands directly but simply instantiate command
objects and pass them to ET++. The framework calls their methods and frees command objects when
they are no longer undoable.

Command  classes, which were first introduced in EZWin [Lie85], are a very elegant example of the
reuse of an abstract design and not only ease the implementation effort substantially but also help to
modularize complex applications into small and more manageable pieces.

7 Graphic Building Blocks
Graphic building blocks, like menus, buttons, scrollbars, and editable texts, are the “Lego bricks” of
an interactive user interface and are available in almost any user interface toolbox. But usually there
is only a fixed set of them and no simple way to modify existing ones or to construct new ones from
predefined lower level components.

Inheritance is one possibility to modify existing components or add behaviour to them. An example
is adding a borderline by overriding the Draw  method of a VObject. But if all predefined items should
have a borderline, it becomes necessary to override all corresponding draw methods which results in



9-14

duplicated code. As another example, a button may consist of an image or text, a single or double
borderline, and a special behaviour to react to mouse clicks. A scrollbar typically consists of an up and
a down button together with an analog slider which itself may be a filled rectangle, an image, or even a
number reflecting its current value. All these parts may be useful for other kinds of dialogs or even in
a completely different context.

At first sight, multiple inheritance seemed to be a possible way to combine various kinds of basic
classes to form the complex items mentioned above. But on second thought it became obvious that
multiple inheritance was not the ultimate solution. As an example, multiple inheritance does not allow
the combination of a TextItem  and two BorderItems  in order to get a Double–BorderedTextItem .

Another observation was that dialog items most often come in groups. The Macintosh printing dialog,
to take just one complex dialog box, consists of about 30 different items which are placed nicely in a
dialog window. On the Macintosh the placement of dialog items can be handled interactively with the
resource editor. But if the size of a single item changes, the overall layout of the dialog has to be
redone. Moreover, the precise horizontal and vertical alignment of text items is a tedious task if done
interactively. This led to the integration of some layout management in ET++ which is based on a
hierarchical and high level layout description rather than on the explicit placement of items.

An almost perfect approach for two-dimensional hierarchical composition of visual elements is the
UNIX text processing tool eqn, a troff-preprocessor for typesetting mathematics [Ker75]. Eqn
translates a simple description of a formula into a sequence of typesetting commands. The basic items
of eqn are characters or strings which can be pieced together with a number of layout operators to
form more complex items. Repeated grouping of items finally leads to a tree representation of the
formula.

As a result a design idea for all kinds of user interface building blocks is to provide a small number
of basic items which can be pieced together with a number of layout operators to form more complex
items following the principle of recursion introduced in a previous section. This approach has been
used to implement the layout management in ET++. All graphical elements visible on the screen are
bound into a tree of VObjects , whose root is installed in a Window .

The simplest items, such as the classes TextItem , LineItem , and ImageItem , are direct subclasses
of the VObject . In contrast to more complex components, they do not separate a model and a view
because the underlying data structure and its rendering is very simple and interaction behaviour (e.g.
editing operations) is typically not needed.
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VObject
simple
TextItem
ImageItem
LineItem
composite
CompositeVObject

Slider
BorderItem
Cluster

OneOfCluster
ManyOfCluster
ScrollBar

Button
ActionButton
OnOffButton
RadioButton
ToggleButton

complex(MVC)
View

StaticTextView
TextView

DialogView
TreeView
CollectionView

Figure 8. User Interface Components.

Figure 8 shows some of the user interface components of the class hierarchy.

7.1 Composite Objects

The layout operators as subclasses of CompositeVObject  are responsible for controlling both the
communication among their components and the relationships among the locations of these components,
i.e. the layout management.

A BorderItem , for example, draws a borderline around its contents and displays an optional title
aligned above its contents in a number of ways. The contents as well as the title are in turn instances of
VObject .
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new Cluster (VCenter,
new BorderItem("Direction",

new OneOfCluster(cIdMode, HLeft,
new Cluster(VBase,

new RadioButton,
new TextItem("Forward"),

0),
new Cluster(VBase,

new RadioButton,
new TextItem("Backward"),

0),
0)

),
new BorderItem("Options",

new ManyOfCluster(cIdOpt, HLeft,
new Cluster(VBase,

new ToggleButton,
new TextItem("Ignore Case"),

// more statements
0);

Figure 9. Part of a Dialog Box and its Defining Statement.

A Cluster  implements a tabular layout of its component VObjects . The commonly used horizontal
or vertical lists of items are special cases of a general layout: Each Cluster  item can be aligned
horizontally as well as vertically in a number of ways (left, right, center, top, bottom, base). The
Cluster  implements a very powerful mechanism which fits the needs of most complex dialog layouts
without having to position items explicitly (Figure 9).

The OneOfCluster  (ManyOfCluster) is a subclass of Cluster  that implements the one-of (many-
of) behaviour of several on/off buttons.
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new Cluster(VCenter,
new BorderItem("Direction",

new OneOfCluster(cIdMode, HLeft,
"Forward",
"Backward",

0)
),
new BorderItem("Options",

new ManyOfCluster(cIdOpt, HLeft,
"Ignore Case",
"Match Whole Word",

0)
),
...

0);

Figure 10. Building the Dialog with Clusters (Short Form).

Any single item in the statement of Figure 9 could be replaced by an arbitrarily complex composite
item. Because this generality is not always needed, other constructors exist for often-used dialog
patterns. This allows a much simpler description (Figure 10).

7.2 Complex Objects

More complex user interface building blocks with the notion of a current selection and clipboard
support are derived from the class View  rather than from the class CompositeVObject  in order to
design a framework which can be used in a general way, ET++ strictly separates classes for
managingthe data structures and classes for rendering them. A View  acts as controller and view in the
MVC paradigm; the data structure class represents the model.

StaticTextView
TextView

CodeTextView
RestrictedTextView

Figure 11. The TextView  Hierarchy.

Text handling classes illustrate this separation very well. A hierarchy of Views  (Figure 11)
incrementally implements the basic text editing and formatting operations on an abstract text data
structure. StaticTextView  renders (displays) an instance of a text class while TextView
implements basic text editing operations. CodeTextView  further adds auto indenting, f ind-matching-
bracket features, and pretty printing of program text to the functions provided by a TextView .

Instances of the class RestrictedTextView  are used whenever the edited text has to conform to a
client specified format. This format is specified with a regular expression and checked upon every
modification of text (there is a class RegularExpression  in the foundation classes). A typical
application of Restricted TextViews  are dialog items to enter floating point or integer numbers.

Text
CheapText
GapText

StyledText
VObjectText

Figure 12. The Text Hierarchy.
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Classes for managing the data structures of a text are descendants of an abstract class Text  defining a
standardized protocol for all subclasses (Figure 12.)

The most important (abstract) methods of the class Text are Cut , Copy , Paste , and GetIterator.
The method GetIterator  returns an instance of the class TextIterator. This iterator retrieves a
sub-sequence of text character by character, word by word, or line by line together with the bounding
box and the baseline.

CheapText  is the simplest implementation of a text data structure and is typically used by dialog
items. The underlying data structure is a dynamic character array. GapText  is used for larger texts
and implements the text abstraction as a character array with a gap as known from the text package of
the Andrew system [Han87]. A subclass of GapText , the class StyledText , supports multifont text.

Figure 13. An Example of a VObjectText.

An interesting subclass of Text  is VObjectText . The protocol supported by visual objects makes it
possible to consider a VObject  as a glyph that can be integrated into text and that behaves as an
ordinary character. This integration of VObjects  into text is realized by the class VObjectText,
which extends the methods for cutting and pasting text intermixed with visual objects. Figure 13
shows an instance of a VObjectText  rendered by a TextView .

Applications of inserting instances of VObjects  into a text are dialog items like buttons or
annotation marks as found in hypertext systems. In order to make dialog items within a VObjectText
responsive to user input, the TextView  methods interpreting input events have to be overridden to
propagate the input event to the corresponding VObject . TextView  itself is a subclass of VObject  and
it is thus possible to nest instances of the class TextView  recursively.

Clippers  are subclasses of VObject  and their instances can be integrated into a text, too. Since all
applications use Clippers  to display their Views  and since the class VObjectText  establishes the
ground to integrate them into a text, ET++ provides a flexible yet simple framework to integrate text
and graphics. In Figure 13 the MouseView  from [Sch86] is installed in a Clipper  and integrated into
the text. Associated with the Clipper  is its scrolling mechanism. This means that it is possible to
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scroll a View shown in the Clipper independent of the rest of the text. The insertion of Clippers  into
text is an example of a view hierarchy. Given the general abstraction of VObjects , the implementation
of this special kind of text structure was very straightforward.

The text building block described so far is flexible enough to be used in many different contexts such
as dialog boxes (dialog items), diagrams (annotations), and editors or browsers (program text). A
graphical editor, e.g., uses TextViews  for annotations and installs them directly into its own view. In
order to get scrol lable text in dialog boxes or in a program editor a TextView  has to be installed in a
Clipper (Figure 14).

Following the goal of uniform mechanisms wherever possible, the implementation of the class
TextView  uses the same mechanism for invalidating a region of a view in order to update the screen as
described in a section 6 . Due to double buffering the screen is updated flicker-free, even for text
displayed against arbitrary backgrounds.

Another specialized view is the CollectionView , which displays any collection of VObjects  as
provided by the foundation classes in a tabular format (in fact, its implementation is based on the
class Cluster  of the dialog classes). It also takes care of selecting and deselecting single items as well
as contiguous and non-contiguous areas of items.

The CollectionView  is a basic building block for all user interface objects which have to present a
collection of selectable items. It is the root class for menus, menu bars, tool palettes, or scrollable
lists of dialog items. Due to the fact that menus are built on top of the very general abstraction of a
View , a menu can always scroll and show items not only as lists but also in a tabular style. Hierar-
chical popup menus are implemented with items of class PopupItem which contain a submenu in an
instance variable and implement the special behaviour to open the respective submenu.

A DialogView  implements a standard behaviour for modal or modeless dialog boxes. A single method
must be overridden to create the dialog, another to set up the initial state, and a last method to react to
all dialog interactions. In addition, the DialogView  registers all editable text items in order to
maintain an active insertion point and to allow cycling through these items with cursor or tabulator
keys. Figure 14 shows a dialog and its underlying hierarchy of views.

The TreeView  renders a tree data structure (in fact a Collection  of Collections) and
implements simple editing operations, for example moving nodes and collapsing/expanding subtrees.
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TextView

CollectionView

TextItems

Clipper BorderItem
DialogView

Buttons
ScrollBar

Figure 14. A Dialog and its Underlying TextView  and CollectionView.

8 Object-Oriented Modelling of System Dependencies
Portability was a major issue in the design of ET++. In contrast to the Macintosh, a UNIX environment
lacks an established window system standard and even the operating system interface varies among
different UNIX implementations. In order to be independent of a special environment, all system
dependencies were encapsulated by introducing an abstract system interface defining a minimal set of
low-level functionality necessary to implement ET++. These functions can be subdivided into the
following categories:

– graphical functions, window management, and input handling;

– font, cursor, and bitmap management; and

– operating system services.

Every category is defined as an abstract class which has to be subclassed for a specific environment
or output device. These subclasses are considered the system interface layer of ET++. As a
consequence, ET++ classes and applications do not contain any UNIX or window system specific calls,
which makes it possible to port ET++ to other environments with a minimum of effort.

The two abstract classes System  and WindowSystem define the entry point into the system interface
layer. Their responsibility is to instantiate new objects representing operating system resources like
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files and directories or window system resources like ports (windows), font managers, images
(bitmaps) and cursors.

In addition, the class System  defines an abstract interface for multiplexing system events coming
from different sources. In a terminal emulator, for example, it is necessary to send and receive data to
or from another process as well as from the window system.

Due to the clean and abstract interface between System  and WindowSystem , they are completely
decoupled, which allows the combination of any window system with any operating system.

Port
PicturePort
PrinterPort

PicPort
PostScriptPort

WindowPort
SunWindowPort
ServerPort
XWindowPort
NeWSWindowPort

Figure 15. Port Hierarchy.

The hierarchy of port classes and their interfaces is another illustration of appropriate object-
oriented modelling of system dependencies (Figure 15).

The root of this hierarchy is the abstract class Port , defining the graphical output primitives
common to all output devices. Subclasses of a Port  override the abstract output primitives with a
device dependent implementation or they add device specific methods.

The PicturePort  collects all drawing requests in a compact data structure which represents the
standard ET++ exchange format for images.

A PrinterPort  adds abstract methods for dealing with an abstract printing device. Its subclasses
PicPort  and PostScriptPort  are implementations for generating PIC [Ker81] commands and
PostScript.

The abstract class WindowPort  extends the output interface of a Port  with methods for input
handling and window management. In essence every instance of WindowPort  represents a single
window of the underlying window system. The window system actually only needs to provide
mechanisms for the management of overlapping rectangular areas on the screen. Adornments like
window borders and title bars are completely under the control of ET++, which results in windows
with exactly the same appearance and behaviour across different window systems. This approach is in
contrast to some other user interface toolkits which build their own window system which either
occupies the entire screen or lives inside a native window of the host environment.

The subclass SunWindowPort  is an implementation of WindowPort  for SunWindows™, Sun's
standard library-based window system; the class ServerPort  for a very simple server-based
implementation of SunWindows (see below); the XWindowPort  for X-Windows (X11R3); and the
NeWSWindowPort  for Sun's network window system (NeWS™).
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WindowPort FontBitmap

ServerPort ServerFontServerBitmap

Connection

ET++

abstract
classes

Client

Server Dispatcher

WindowPort FontBitmap

SunWindowPort SunFontSunBitmap

abstract
classes

SunWindows

Figure 16. Structure of a Server Based Implementation of ET++.

Before porting ET++ to a standard server-based window system like X or NeWS, the authors wanted
to prove the usefulness of the ET++ system interface approach by implementing a simple server-
based version of the SunWindow device interface. The basic idea was to split the functionality of the
SunWindow classes into a client and a server process (Figure 16).

In the server classes (ServerPort , ServerBitmap , ServerFont  etc.) about 35 methods were
simply overridden with a remote procedure call interface. The classes Connection  and Dispatcher
are abstractions for a tcp/ip stream connection between a client and a server process. The
implementation (about 1000 lines) showed that ET++ applications can very well run on server-
based systems with acceptable performance. After having finished the ET++ port to X and NeWS, it was
interesting to note that the first prototype of a server-based implementation is still faster than both
the X and NeWS implementation.

Due to dynamic binding of the device dependent methods, ET++ is able to concurrently run
applications on different window systems without any recompiling. It is even possible to switch the
window system at run-time or open windows on different window systems at the same time.

Usage of the port classes is straightforward: ET++ maintains a current output port to which all
drawing requests are automatically directed. Because updating of this current port is completely under
the control of the application framework, application-transparent printing is just a matter of
switching the current port to a printer port.

The design of ET++'s imaging model was influenced by two conflicting goals: it should be
sophisticated enough to ease its use in ET++ applications considerably but at the same time simple and
device independent enough to allow an implementation on top of various window systems with
minimum effort.

A consequence of the second goal was the decision of not supporting the inherently device dependent
and nonportable raster operations found in most current window systems. These operations are
difficult to emulate (for example on a printing device like a PostScript printer) and their visual
effect on color systems is often unpredictable or unsatisfactory (albeit the current version of ET++
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does not support color). Therefore, a subset of the stencil model found in the PostScript imaging
language was adopted. This model can be emulated on most window systems with little effort.

In PostScript all drawing is performed by first constructing an arbitrarily shaped path which is
then used for filling and stroking with a color, or to define a clipping region. This general concept is
hard to implement on top of an existing window system and, more important, it is not really necessary
for typical ET++ applications. Consequently, ET++ imaging model has only some predefined paths like
rectangles, round corner rectangles, ovals, arcs, and polygons which can all be filled or stroked. Lines
can only be stroked, characters only filled and a clipping region is restricted to having a rectangular
shape.

This imaging model is embodied in 35 primitive methods which must be implemented for any
particular output device. The (stateless) interface to these primitives is cumbersome to use because
they all take their drawing attributes as parameters. A second (stateful) interface has been added
which maintains attributes such as fill and stroke pattern, pen position, etc., thereby providing an
alternative set of graphic functions with less parameters. Other interfaces exist to further reduce the
number of parameters for common usages. But, in the spirit of narrow inheritance interfaces, all
these alternative interfaces are based on the primitives defined in the abstract Port  and thus do not
enlarge the device interface.

A problem with the implementation of this simple and abstract device interface is that it is
sometimes difficult to use functions provided by an underlying window system suitable for optimizing
some special cases. Passing every single character through the device interface and the clipping
machinery of the window system just to get displayed, for example, is inefficient. This is why most
window systems provide special functions for drawing more than one character at a time (a batch) in
order to internally use one single optimized operation to clip and display the entire batch. Because
such optimizations are inherently window system dependent and cumbersome to use, ET++ only
provides methods to output a single character or a string, but implements an abstract mechanism to
collect all characters in a window system dependent data structure which automatically is flushed by
ET++ at appropriate times.

Due to the low level nature of the ET++ output primitives some information about the abstract
high-level structure of a sequence of graphic primitives is lost. With this information at hand some
drivers would be able to optimize their internal behaviour. ET++ defines a primitive for specifying
additional information to a driver. This information is of advisory nature only and can be safely
ignored by the driver. There is also no need for an application to provide any information. Most calls to
this primitive come in pairs, bracketing a sequence of graphic requests. Examples are the double
buffering mechanism of the Window  class and the high resolution printing of text, e.g., on a PostScript
printer. Usually, all text positioning is based on screen pixel coordinates. But a PostScript printer is
able to adjust characters much more precisely. Consequently, additional information about
synchronization points within a line is given to the PostScript driver.

9 ET++ Programming Environment (ET++PE)
First experiences with ET++ have shown that providing a class library with rich functionality
considerably increases the learning time for novice users to fully exploit this functionality. For this
reason the design and implementation of a programming environment including browsers for ET++
was initiated. Browsers and browser-like tools make inheritance more accessible and easy to use.
ET++PE includes a source code browser to access class definitions and their structure as well as an
inspector to view object structures at run-time. Every ET++ application has these tools automatically
built in; they execute in the application's process. The browser or inspector can be invoked either at
startup time or at any time while the application is running by pressing a special key.
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9.1 The Inspector

The state of two objects can be viewed concurrently in the two panes of the inspector (Figure 1 7 ) .
After startup the left pane displays the values of the application's global variables. Pointer variables
indicate their hexadecimal value and the dynamic type of the pointer. Clicking on a pointer variable
dereferences the pointer and shows the corresponding object in the other pane of the inspector. There
is a special item to retract to the previously inspected object. The name of the classes from which the
variables are inherited are indicated together with the values of the instance variables.

Figure 17. The Inspector.

The inspector always provides instant access to the source code. A menu allows the selection of the
classes' definition or implementation to be displayed in the Source Code Browser (see below).

Navigation through a chain of pointers starting at some global variable for inspecting an object can
be cumbersome. For this reason, a so called inspect-click has been implemented. An inspect-click is
just a mouse click together with some modifier keys. It allows clicking on any visible object on the
screen for inspecting it. This feature is especially helpful for students to “learn by example” about
the implementation of a certain part of an application. To understand how the find/change dialog in a
text editor is implemented, e.g., the user does an inspect-click over the dialog box. Once in the
inspector, the user has access to the actual values of instance variables and to the corresponding
source code.

9.2 The Source Code Browser

Figure 18 shows a screen dump of the Source Code Browser. Its left pane displays an alphabetically
sorted list of the classes known in an application. The right pane provides a full-fledged text editor
showing the pretty-printed source code in different font styles. Built into the text editor are also some
browsing features to edit the super class or the class in the current selection.
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Figure 18. The Source Code Browser.

An alphabetically sorted list does not reveal the structure of a class hierarchy. This is even a
problem in the standard system browser for Smalltalk-80 [Gol84], where no graphical display of the
subclass relationship but only a narrow view of the class hierarchy is available. For this reason, the
Source Code Browser optionally provides a tree representation showing the inheritance relationship
between the classes (Figure 19). Clicking on a class name in the tree loads the corresponding source
code into the editor.

The hierarchy viewer is based on the class TreeView  and therefore allows collapsing and expanding
a subtree. Notice that ET++ is based on a version of the C++ compiler not including multiple-
inheritance, therefore a simple tree suffices. The layout algorithms for graph structures to display,
for example, the structure of a multiple inheritance class hierarchy have been explored in another
ET++ based project [Sch89]. An alternative way to display the class structure is a flat inheritance
view. For each class this representation shows the associated inheritance path in a tabular form
(Figure 19). The flat inheritance view allows quick exploration to determine where some behaviour
is inherited from.

In an application framework the abstract classes are particularly important. That is why they are
highlighted with an italic styled font in all representations.
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Figure 19. The Hierarchy Viewer.

9.3 Beyond Browsing

Browsing in a class library is one way to come to understand an object-oriented system. But novice
users of an object-oriented application framework need some additional support to see how the
different classes fit together. In order to reduce the high learning effort of an object-oriented
application framework, it became desirable to have a cookbook for ET++ which has some hypertext
facilities. The cookbook should include a collection of recipes illustrating the usage of the framework
together with a rich collection of full applications.

To implement a first prototype of such a cookbook for ET++, a hypertext layer similar to
Intermedia [Yan88] was added to the existing ET++ classes. The basic functionality of this prototype
consists of editors for textual descriptions, for graphics, and for source code, allowing the creation of
links between these types of documents. Links from a textual description to the corresponding piece of
source code in an application are especially helpful for a cookbook.

In order to be able to experiment with a sample application referenced in a descriptive text, so
called action links were introduced. When traversed, an action link does not display another document
but rather invokes an application as a separate process. This application can then be further explored
with the help of inspect clicks as described before.

To give some support to the hierarchical organization of a cookbook, a special hierarchical link type
was defined. Based on these links a table of contents similar to the hierarchy viewer can be generated
and displayed in an ET++ TreeView .

Manually linking all the references of classes in a text to their source code would be a nuisance.
Therefore, the cookbook has an implicit referencing facility: after selecting a class name in a text, the
user can invoke a menu command to display the code of the class.
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Figure 20. The ET++ Cookbook.

Figure 20 gives an example of a session with the ET++ cookbook. The links in the text are marked
with a button consisting of an icon indicating the type of the link together with a descriptive name.
Clicking on a link button follows the link. In Figure 20 the user first followed a link describing the
MVC-design graphically and then further followed a link from a textual description to a piece of code of
a simple text editor showing how an instance of a TextView  is created. The link button marked with a
star icon represents an action link. When activated it invokes the example application miniedit. The
application window titled “Cookbook” shows the list of documents already visited.

10 Metrics
The current implementation of ET++ consists of 234 classes with 2343 methods. Only a subset of
these classes and methods has to be known for using ET++.
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classes methods lines of code

Basic Building Blocks 60 604 11157
Appl. Framework 16 228 3792
Graphic Build. Blocks 103 908 14632
Prog. Environment 9 75 1472

System Dependent Parts
Abstract Interface 16 273 4270
SunOS 5 38 1435
Postscript 1 17 586
NeWS 6 51 575
SunWindows 6 35 3284
X11.3 6 57 1300
Server 6 56 991
Total 234 2342 43494

Figure 21. Source Code Statistics.

Around 30-40 classes are used to develop a typical application. The ET++ class library comprises
43494 lines of C++ and 1200 lines of PostScript (Figure 21). Figure 22 shows the distribution of
the ET++ classes (excluding the classes modelling the system dependencies) over the different levels
of the hierarchy.
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Figure 22. Distribution of Classes in the Hierarchy.

(Level 0 contains the class Object  and other classes not derived from Object )

11 Experience
This section describes the experience gained while working with ET++ and its implementation
language C++.

11.1 Experience with ET++

During the two years of ET++ development, several applications evolved which were used to test the
functionality of ET++. The most interesting application of ET++ is certainly the ET++ programming
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environment (ET++PE) described in section 9 . The implementation of the ET++PE user interface
illustrates the high reusability of the ET++ classes. All of the inspector's user interface components,
the source code browser, and the hierarchy viewer had already been part of the ET++ class library or
were implemented as very simple subclasses thereof. The views showing the instance variables, the
sorted list of all classes in the system and the flat inheritance view are just instances of the
CollectionView . The source code editor is an instance of the CodeTextView . The view for a tree
display is an instance of the class TreeView . Due to the high reusability of the ET++ classes, the final
version of ET++PE was finished after an effort of two person months.

An object-oriented application framework transfers a lot of control flow from client code into the
class library. This characteristic allows the

addition of new functionality without any modifications in existing applications and with little
programming effort. Especially when a system is well factored, a large amount of leverage is
available. The implementation of the inspect-click (see section 9.1) is a good example: implementing
this mechanism only required the addition of a few lines of code to the existing event distribution
mechanism centralized in the class VObject  (the root of all graphical classes). The new code filters
out the special key combination and calls the Inspect  method of the underlying object. This code is
automatically inherited by all applications and implies no programming effort at all.

A well factored system with no code redundancies offers a lot of benefits during the tuning of a final
release. Each small improvement in efficiency disperses throughout the entire system. By following
the design rule of declaring instance variables types as high in the hierarchy as possible, it was very
easy to substitute a class with another more adequate one. The data structure underlying the Com-
positeVObjects , for example, was an ObjList  in a first version. Based on the fact that these clusters
are accessed much more than modified, the ObjList  (a pointer-based implementation of a list) was
replaced with an array-based version provided by the class Ordered–Collection . This change
required only the modification of the source line where a new instance of a collection is created. Since
the layout mechanism of CompositeVObjects is used extensively in ET++ this small modification
improved the overall performance of ET++, applications.

Using ET++ in student projects revealed that they need a substantial amount of training until they
come up with good reusable classes. But how to teach and train students to design reusable classes
remains an open issue.

From a project management point of view it seems that the small ET++ project team (two computer
scientists) was a big help in reducing code redundancies and toward the construction of a homogeneous
system.

The evolution of the classes CollectionView  and Menu  illustrates a very interesting example of the
“Promotion of Structure” principle as defined in [Ste86]:

In a first version of the class Menu , the item list was implemented as a simple linked list for
efficiency reasons. Later it became necessary to have the items of a font menu sorted alphabetically.
The first idea was to integrate a sort method into the menu class, but after second thoughts the linked
list was replaced with the more general data structure Collection  found in the foundation classes. To
show a sorted menu it was now only necessary to use a SortedObjList  rather than an ObjList .

At that time the class Menu  was basically a View  which could render a Collection  of special
MenuItems  as a vertical list from which one item could be selected with the mouse. This mechanism
seemed useful in itself, e.g., for implementing a palette of tools like the one found in ET++Draw. The
next logical step was to factor out this mechanism into a class called CollectionView .

Simultaneously, the layout algorithm for showing a Collection  was extended from a vertical-only
to a two-dimensional style. With this extension the CollectionView  became one of the most reusable
parts of ET++. It is now used not only to build menus but also for Macintosh-like menu bars, for
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scrollable lists of arbitrary items, and for tool palettes. All that had to be done to achieve this was
adding or changing a few lines of code.

In yet another step the CollectionView  was modified to work with the general VObject  instead of a
more specialized MenuItem. This opened the road for implementing the graphics part of a simple
spreadsheet application with each cell containing a full-fledged text editor.

The last step was to replace the special layout algorithm by a dialog item of type Cluster  to further
reduce the source bulk of CollectionView .

11.2 Experience with C++

Using C++ as the implementation language of ET++ has worked extremely well. The well known
efficiency of C++ was a very favorable background for the implementation of ET++. Indeed, we never
experienced efficiency problems due to dynamic binding. In addition to the object-oriented concepts,
C++ provides some other features that improved the programming interface as well as the code of
ET++: default arguments are often used in the constructors of ET++ classes and support easy-to-use
but still flexible method interfaces. Operator overloading was very useful for implementing the two
classes Point  and Rectangle  and helped to simplify the code considerably and thereby also improved
its readability.

C++ lacks support for garbage collection, which was sometimes a burden during the development of
ET++. A general garbage collector, on the other hand, would impact the efficiency of C++ programs.
Due to the single-rooted hierarchy structure of ET++, the class Object  was instrumented to gather
some statistics about memory allocation. These statistics were indispensable to find memory leaks.
Some experiments have been made with the conservative garbage collector described in [Boe88]. This
garbage collector has not been designed specificly for C++ and therefore does not call the destructors
of an object when it is freed. For this reason further investigations in the conservative garbage
collector have been relinquished; the garbage collector is only invoked after an application runs out of
memory. For the allocation of small objects like iterators, ET++ provides a class for implementing
class-specific allocators. Objects of these classes are allocated and freed in chunks and thereby reduce
the overhead of free store management dramatically. Measurements have shown that in a typical run of
an application only 10% of all dynamic objects are allocated on the heap, the other 90% by class
specific allocators.

The major benefit of C++ is its strong static type checking. Especially while reorganizing the class
hierarchy, the strong static type checking of C++ proved to be very valuable and detected
inconsistencies at compile time.

Working experience with C++ has shown that having information about the classes and their
structure available at run-time is not just convenient but even required. The approach of building
additional descriptor objects manually or with the help of some tricky preprocessor macros is not
very elegant. All of the information collected in such a metaclass object is in fact a subset of the C++
translator's compile time information (e.g. its symbol table). As a logical consequence it would be
very easy to automatically generate the necessary structures containing the meta-information. The
difficult part is to agree upon what information is really needed. But without a consensus every
library builder will most likely invent some new tricks and programming conventions making the
exchange of classes between libraries much more difficult.

Executable modules developed with ET++ are quite large (> 1 MByte). The high reusability of
classes results in almost every class statically depending on a large number of other classes although
most of their methods are never called in a given application. Building a library with every method as
a separate library component is not a decent solution because of the way the AT&T C++ translator
handles dynamically bound functions (an array of function pointers). This creates many external
references and outperforms even smart linkers.
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A better solution is dynamic demand loading and linking of classes into running applications. Using
this approach results in very small ET++ applications (5k – 100k). A dynamic linker for a C++
environment has to provide a hook that allows the calling of the constructors of the object file's static
objects after a class has been linked to the application. The programming interface of the dynamic
linker of SunOs 4.0 [Gin87], however, lacks such a hook and thus cannot be used for the dynamic
linking of ET++ classes. For this reason dynamic linking support for ET++ had to be reimplemented.

ET++ was developed with a C++ version not supporting multiple inheritance. The current class
hierarchy of ET++ is easy to understand and the authors doubt whether ET++ would have the same
clear class structure had multiple inheritance been used.

12 Overview of Other Class Libraries
This section gives a brief overview of other class libraries and compares them with ET++. The feature
list in Figure 23 can be considered as the union of the functionality provided in the class libraries for
conventionally compiled languages.

Class Li-
brary

MacApp II Atk Xt Inter
views

Eiffel-
Librar

y

OOPS ET++

Implementation
language

ObjectPascal
C++

Class C C++ Eiffel C++ C++

Operating
System

MacOS Unix Unix Unix Unix Unix Unix

Window System Macintosh X X X X N/A SunWindow,
X, NeWS

Basic Data
Structures

+ – – – – ++ ++

Object
Input/Output

– + – ++ ++ ++ ++

Application
Framework
Classes

++ + – – – N/A ++

User Interface
Building Blocks

++ ++ ++ ++ ++ N/A ++

Layout of Com-
posite Objects

– – ++ ++ – N/A ++

Dynamic Link-
ing of Classes

– ++ – – – – ++

Abstract Device
Interface

++ – – – – N/A ++

Browsers,
Inspectors

+ – – – ++ N/A ++

– no support
+ basic support
++ support
N/A not applicable
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Figure 23. Overview of Related Class Libraries.

12.1 The Andrew Toolkit (Atk)

Atk [Neu88], developed at the Information Technology Center (ITC) of Carnegy Mellon University, is
implemented with a custom object-oriented environment called Class. Class is a preprocessor for C
which supports object-oriented programming and integrates dynamic linking of classes. Atk was
originally built on a custom window system and has been ported to X. The architecture of Atk
applications is influenced by the Smalltalk-80 MVC paradigm. Every toolkit component consists of a
data object (model) and view (view+controller) pair synchronized by a change propagation
mechanism inherited from a common superclass (Observer). The motivation for the view/data object
distinction is that a data object can be displayed simultaneously in several views. In ET++ the
functionality to show different parts of the same view is provided generically by the framework based
on the class Clipper . Only when different views of the same model are displayed does the programmer
have to use change propagation to synchronize them: an example of this is a tabular (numeric) and a
pie chart view of a list of numbers.

The Atk class library includes a text building block with the capability to integrate view/data object
pairs like a spreadsheet into the text. In this respect, it is similar to ET++'s VObject Texts .

Looking at the code of some Atk based applications reveals that a lot of common behaviour of these
applications has not been factored out into the class library. To support scrolling or auto-scrolling,
for example, Atk provides only a scrollbar class but the scrolling behaviour has to be reimplemented
in every application. In the same sense, support for mouse tracking is insufficient resulting in code
redundancies in all applications. Atk provides no support for undoable commands, and indeed all Atk
based applications provide no undo facility.

Object input/output is handled by defining a standard ASCII format for objects but no support for
linearizing circular pointer structures is provided. In contrast to ET++, the structure of the Atk class
hierarchy is flat; just some subclasses of the text classes can be found below level 3.

12.2 X-Toolkit (Xt)

Xt [McC88] for the X window system provides a higher level programming interface to the underlying
X window system. It is based on the abstraction of a widget. A widget can be considered as an abstract
class from which specific user interface components can be derived. Every widget is based on one X
window. Widgets were originally designed to be a lightweight abstraction. Considering their internal
structure, it is questionable whether the implementation of a spreadsheet, for example, could use a
widget for each cell without substantial performance penalty.

Instances of widgets are buttons, text editor windows, forms, or scrollbars. Widgets are organized
in a hierarchy and the layout of the children of a widget is controlled by composite widgets. The
functionality provided by widgets can be compared with the ET++ classes VObject  and
CompositeVObject . Xt is coded in pure C and based on conventions (known as the Xt Intrinsics) to get
an object-oriented flavor. The lack of a real object-oriented programming language is the reason that
deriving a new class from an existing widget is rather complicated; all of these conventions have to be
taken care of.

12.3 The Object-oriented programming support library (OOPS)

OOPS [Gor87] was not designed to provide specific support for graphical applications. It implements
most of the collection classes known from Smalltalk and similar to ET++ but without robust iterators.
Included is an object input/output facility that is less transparent concerning the storing of pointers
than ET++. We were not able to base ET++ on OOPS because both projects started at about the same
time.
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12.4 The Eiffel library

The Eiffel library [Mey88] covers general data structures like search tables or trees. The
implementation of these classes does not rely on dynamic type checking but uses genericity as provided
by the Eiffel language. Object input/output of any class can be achieved by deriving from the class
STORABLE  (Eiffel supports multiple inheritance). The graphic classes of the Eiffel library are
implemented for the X window system and provide abstractions for windows, menus, or simple
graphical shapes like polygons or circles. Higher level application framework components are
missing. In contrast to ET++, the Eiffel library lacks an abstract device interface supporting
transparent output to a window or to a PostScript printer.

12.5 MacApp (I+II)

The architecture of MacApp I [Sch86] provided the base for ET++. MacApp II [Bia88] is a major
redesign of MacApp I with the goal of unifying its graphic model and easing the construction of view
hierarchies. In a parallel development effort, the ET++ graphics model was extended in the same
direction. In both MacApp II and ET++ all graphic objects are derived from a common root class. The
major difference is that the root class of ET++ is more lightweight and, contrary to MacApp II, it does
not include clipping. This has the advantage of ET++ VObjects  having very little space and
performance overhead. MacApp II provides an interactive tool to layout groups of graphical objects and
is not based on declarative lay out specifications like in ET++.

A major drawback of MacApp is its hybrid structure. MacApp is only a thin layer on top of the
nonobject-oriented Macintosh toolbox. The implementation of an application, as a result, always
requires some intimate knowledge of both MacApp and the Macintosh toolbox. Experience shows that
especially user interface components like menus profit extensively from the polymorphism offered by
object-oriented languages.

12.6 Interviews (Interactive Views)

Interviews [Lin87] is a user interface toolkit written in C++ running on the X window system. The
design of Interviews is centered around a class Interactor  defining the behaviour of all interactive
objects. Interviews includes classes supporting a simplified version of the TEX [Knu86] box and glue
model to lay out interactors side by side. Interviews provides typical user interface components like
buttons, scrollers and text buffers as found in other toolkits. Interviews is quite a rich class library
consisting of around 130 classes. The class library has been kept intentionally shallow (most classes
are at level 2 or 3) based on the experience that many levels of subclasses overwhelm programmers
and because there are no integrated browser and inspector tools. The imaging model of Interviews is
similar to that of ET++, but other major application framework components are missing.

13 Concluding Remarks
A first version of ET++ including the programming environment without the cookbook is distributed
in the public domain. The current release of ET++ runs under SunWindow, X11.3, and NeWS. A port to
Apple's A/UX™ is in progress.
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