
UBILAB Technical Report 94.9.1

Computer Supported Cooperative
Software Engineering with Beyond-Sniff

Walter R. Bischofberger, Thomas Kofler,
Kai-Uwe Mätzel, Bruno Schäffer

UBILAB, Union Bank of Switzerland
Bahnhofstr. 45, CH-8021 Zurich

e-mail: {bischofberger, kofler, maetzel, schaeffer}@ubilab.ubs.ch

Teamwork is a prerequisite for the development of large complex software systems. In
conventional software engineering coordination of teamwork is achieved by
exchanging formal documents and by providing support for keeping these documents
consistent even while several developers are evolving them.

In order to support teamwork more effectively it is important to move the focus
beyond coordination towards cooperation. The goal of the Beyond-Sniff project is to
provide cooperation support in three ways. First, by providing a terminological and
conceptional foundation for the field of cooperative software engineering. Second, by
developing tools for computer supported cooperative software engineering. Third, by
developing a platform for control and data integration, a technical prerequisite for
computer supported cooperative software engineering.

1 Motivation and Overview
Software systems tend to have a more and more complex and comprehensive view on the
application domains they model. The complexity of these systems goes hand in hand with the
difficulties (the amount of efforts to be invested for their development) arising during their
development. This is an important reason why the implementation of even modest software
systems can only be carried out effectively as an iterative and cooperative process.

Communication and coordination are prerequisites to successful cooperation. Their quality
strongly affects team productivity and the resulting products. Unfortunately, the costs of satisfying
communication and coordination needs quickly reach unacceptable dimensions. These costs
naturally limit the size of closely cooperating teams and therefore, also the size and complexity of
projects that can be carried out cooperatively.

Since we have (or want) to stretch the limits created by the negative side effects of cooperation,
we need methods and tools that explicitly address communication and coordination. The provision
of suitable methods and tools and their application are the core of an emerging discipline that is
called cooperative software engineering. A sensible and promising approach to cooperative
software engineering is the enrichment of conventional software engineering by concepts found in
the field of computer supported cooperative work (CSCW).

- 2 -

1.1 Motivation for the Beyond-Sniff Project

Based on our experience in developing large object-oriented software systems we began in 1991 to
develop Sniff, an innovative C++ programming environment [Bis92a]1. We drew the motivation
for this project from the facts that the characteristics of object-oriented software development
strongly increases the requirements for development environments [Bis94] and that, at that time,
our personal needs were not fulfilled by any available environment.

Sniff proved to be very useful for browsing, editing and executing large object-oriented
software systems. The longer we use it in our team, the more it becomes clear that its conventional
way of supporting cooperation with a configuration management system is far from optimal.
Configuration management helps to organize the development process of large projects but it
addresses only few problems of cooperation. For instance, it ignores the exchange of arbitrary
information related to projects. In other words: there are no facilities for computer supported
know-how transfer or fine grained harmonizing of activities.

A useful cooperative development environment should provide such support. Therefore it has
to comprise facilities for flexible communication between coworkers and for attaching arbitrary
information to all kinds of project artifacts. Typical information to be exchanged or attached are
rationales for structure and evolution of subsystem interfaces as well as myriads of detailed design
decisions.

Neither current software engineering nor development environments and their underlying
architectures are suited to provide comprehensive cooperation support. This insight provided us
with the motivation to start the Beyond-Sniff project.

The goals of the Beyond-Sniff project are to develop a conceptual framework for cooperative
software engineering, and to build the development environment needed for its enactment. This
environment requires a platform that allows to integrate a set of existing and new tools into a
cooperative software development environment.

1.2 Contents

Section 2 outlines two forms of cooperation we identified and defines the term Cooperative
Software Engineering (CSE). Based on these definitions it investigates currently employed
approaches to cooperative software engineering. Section 3 describes the Beyond-Sniff approach to
support CSE. Section 4 provides some background on the realization of Beyond-Sniff and outlines
the relationship between our approach and related work. Section 5 draws conclusions.

2 Cooperative Software Engineering
The terms "cooperative software engineering" and "computer supported cooperative software
engineering" are used in different contexts with different meaning. There is no generally accepted
definition for them. For this reason this section defines the term Cooperative Software Engineering
(CSE) and discusses state-of-the-art approaches to support it.

2.1 Forms of Cooperation

We assume an intuitive understanding of the term cooperation. Cooperation usually implies shared
goals among different actors [Mal94]. Coordination is managing dependencies between activities.
Coordination is an important part of cooperation.

1 Sniff was commercialized under the name of SNiFF+ at the end of 1992. The product version is free for
universities and can be downloaded by ftp from eunet.co.at (/pub/vendor/takefive) or from
self.stanford.edu (/pub/sniff).

- 3 -

We identify two forms of cooperation, policy-driven and informal cooperation. Policy-driven
cooperation is done by exchange and correct handling of well-structured documents and
concurrency control regarding the access to artifacts. Informal cooperation is characterized by the
unrestricted exchange of structured or unstructured information.

Configuration management as defined by conventional software engineering is a subset of
policy-driven cooperation. Examples for informal cooperation are the provision of textually
annotated artifacts, e-mail messages, or the extraction of information from source code.

2.2 The Nature of Cooperative Software Engineering

Based on the term software engineering, as defined by Pomberger [Pom93] and on the terms
introduced above we can define Cooperative Software Engineering (CSE) as follows:

Cooperative software engineering comprises all software engineering methods,
norms and tools that support teamwork flexibly and effectively.

Cooperative software engineering is therefore a subset of classical software engineering. Tools
support CSE if they fulfill the following requirements: They provide mechanisms for policy-driven
and informal cooperation as well as for access control and these mechanisms are completely
integrated into the tools.

The following examples illustrate this definition. A syntax driven editor supporting distributed
simultaneous editing is no CSE tool because it does not support policy-driven cooperation. A
documentation tool comprising browsers for information acquisition, supporting simultaneous
editing and exchange of documents between team members (if the privileges permit it), is a CSE
tool.

2.3 Approaches Related to Cooperative Software Engineering

There is a variety of approaches supporting cooperative work in general or cooperative software
engineering in particular. This subsection discusses how conventional software engineering,
process-centered software engineering, and CSCW address cooperation, and why neither approach
fully meets the definition of CSE.

Conventional Software Engineering

For conventional software engineering coordination of concurrent development is one of the major
task of configuration management. Pessimistic and optimistic approaches to coordination are
distinguished today [Sch93].

Pessimistic coordination means that all developers work on the same artifacts. The concurrent
editing of the same files is prevented by locking. In practice, this approach fails as soon as the
number of coworkers exceeds a project-dependent but very low boundary.

During optimistic coordination each developer works on his personal copy of the source code.
From time to time, the copies can be merged into a new shared version. Conflicts between changes
have to be resolved during the merge process. The advantage of optimistic coordination is that it
makes it possible to decouple developers almost completely for some time. The price for
decoupling is the need for merging. At the merging phase, part of the communication that has been
postponed now takes place in a more concentrated manner. Decoupling pays off because the cost
of postponing and merging are usually much smaller than the benefit obtained.

Pessimistic and optimistic coordination are supported by configuration management tools. Both
are forms of policy-driven cooperation. Informal cooperation is not addressed–on purpose–by
conventional software engineering, which is a consequence of the basic assumption that software
development can be carried out top-down as a tailoristic, rigidly sequential process. Although this
basic assumption is today generally considered wrong (e.g., [Bis92b, Boo94]), informal
cooperation is still not addressed by software engineering.

- 4 -

Process-Centered Software Engineering

Process-centered software engineering tries to establish a comprehensive theoretical basis for
understanding, describing, and enacting specific software processes [Mad91, Ost87].

The basic idea is to describe a specific software process with all the activities and information
flows it comprises. The resulting process model is represented as a set of rules that define in which
sequence under which preconditions which documents may be modified with which tools. With
the same mechanism invariants for the usage of tools are defined [Kai93]. A process model is
enacted by executing it with a process engine, which is the hub of every process-centered
development environment. The process engine controls the application of all tools. Tool
integration hence is a prerequisite for practical process-centered software engineering.

Process-centered software engineering is still in its infancy but receives great attention by
researchers. This is manifested by the International Software Process Workshop and International
Conference on the Software Process series. We believe that it will take considerable research
efforts before process-centered software engineering comes into widespread use.

Process-centered software engineering is a consequent evolution of conventional software
engineering approaches. Its purpose is to optimize policy-driven cooperation without addressing
informal cooperation.

Computer Supported Cooperative Work (CSCW)

The goal of CSCW [Ell91, Gru94] is to assist groups in communicating, in collaborating, and in
coordinating their activities. Ellis et al. propose a time and space taxonomy for CSCW tools
[Ell91] as depicted in figure 1. Meeting room technology would be within the upper left cell; a
real-time document editor within the lower left cell; a physical bulletin board within the upper
right cell; and an electronic mail system within the lower right cell.

Same Place
face-to-face
interaction

asynchronous
interaction

synchronous
distributed
interaction

asynchronous
distributed
interaction

Different Places

Same Time Different Times

Figure 1. Time space taxonomy according to [Ell91].

Tools located in any cell of this taxonomy can be useful for CSE. This is true for all general
purpose CSCW tools, although they do not fulfill our definition of CSE. Due to the relative
immaturity of the field of CSCW there are not many systems in actual use for software
engineering besides e-mail and bulletin boards.

There are also a few tools that were explicitly developed for CSE. They mostly provide support
in synchronous editing and debugging (e.g., [Dew93, Kai87]). We would like to have this kind of
tools available in daily work (as well as many general purpose CSCW tools) but we do not think
that they address the most important problems developers face today in cooperatively developing
large software systems.

There are two areas where we foresee considerable benefit in applying CSCW to software
engineering. One is the support of synchronous activities during the analysis and design phases
(e.g., [Ols91]). The other is support of asynchronous informal cooperation. Practical tool support
for both areas is missing today because specific tools for CSE can only be built based on
expensive infrastructure integrating sets of tools used by sets of developers. Research about these
problems is carried out in the field of tool integration [Sch93].

- 5 -

3 CSE with Beyond-Sniff
Considerable research for methods and tools supporting cooperation is currently being carried out
in the areas of process-centered software engineering and CSCW. We believe that results from
both areas should be practically applied as soon as they are available. Unfortunately, the support of
informal cooperation on software development is neglected in both software engineering and
CSCW.

It is therefore important to do research in the area where CSCW and CSE intersect. We have
taken first steps in this direction in developing Beyond-Sniff..

3.1 Informal Cooperation with Beyond-Sniff

Cooperative software development requires a lot of communication between developers. The
increasing popularity of object technology tends even to increase these communication needs. Due
to closer cooperation many small pieces of information have to be shared. This is frequently
neglected because the conventional approach of putting them into documents with fixed structure
does either not make sense or is too expensive. These problems are typically worst for information
that can not be formalized, such as ideas, short term plans, or information about classes and
methods. This kind of information is difficult to store in documents and it is even more difficult to
keep it up to date and find it once it is stored.

Developers are often interrupted by requests for some specific information that cannot be
provided by someone else. This kind of interrupts affect the concentration and may be counter
productive. Facilities for asynchronous communication may remove a source of productivity
decreasing interruptions.

Developers working in the same building can reduce these problems to a certain degree by
informally keeping each other up-to-date. This is not the case for large teams which are possibly
separated by large distances. In this case the communication problems lead either to a constant
information deficit or to a huge communication overhead which both reduce overall productivity.

We experienced these problems first hand when Sniff was commercialized and certain parts
were finished in Zurich while work was already going on in Salzburg. This was a strong
motivation to develop an annotation mechanism as part of the Beyond-Sniff platform. This
annotation mechanism makes it possible to connect structured information with any kind of
artifacts, be it fine-grained artifacts such as classes and instance variables or coarse-grained
artifacts such as projects and files.

A Beyond-Sniff annotation has a type that defines which information fields it comprises. This
makes it possible to store different kinds of structured information. Frequently used annotation
types are, for example, error, documentation, idea, and to-do annotations. Annotated artifacts are
visually marked in all Beyond-Sniff tools. One mouse click suffices to display all annotations
connected with an artifact. Annotation types can be extended by inheritance and they are defined
with a graphical schema editor.

Annotations are centrally stored for every project per site. A developer has either the possibility
to access an annotation via artifacts, or he can formulate an OQL [Cat94] query with a query tool
to obtain all annotations matching certain conditions. For example, it is possible to obtain all idea
or to do annotations that have been connected to a certain project since a given date. Figure 2
shows the query tool with an evaluated query. Figure 3 shows the screen after selection of a
matching annotation: The user sees that the class SymtabItem has annotations. One of them is
shown in a separate window.

There are many situations in which a developer wants to be notified automatically when an
annotation is created. For these situations he can define OQL trigger queries that are executed for
every newly created or modified annotation. Upon matches the developer is notified either with the
Beyond-Sniff notification tool or by e-mail. A typical trigger query selects, for example, all error
annotations of projects belonging to a certain developer.

- 6 -

Figure 2. AnnotationBrowser.

The central storage of annotations together with the query and trigger query mechanisms makes it
possible to easily share information. For instance, there is no need to bother about who might be
interested. This reduces the communication overhead by decoupling developers the same way as
the Smalltalk change propagation mechanism decouples cooperating objects [Gol89].

Figure 3. Annotation aware Editor and SymbolBrowser with an annotation.

- 7 -

Annotations are conceptually a mechanism for undirected communication. Sometimes it is useful
to make sure that coworkers read a particular annotation. Beyond-Sniff has two features for that
purpose. First, an annotation can be specifically addressed to developers. Second, the creator can
specify that he wants to be automatically notified whenever an annotation is opened.

Annotations can not only be inserted manually but they are also generated by tools. Typical
cases in which annotations are generated are the check-in of a modified file into the version
control system, or the modification of a project structure.

Beyond-Sniff's annotations are a hybrid approach to information management. On one hand,
they can be used together with links to organize information as a hypertext. On the other hand they
have a structure defined by a type, they are centrally stored and they can be retrieved with a query
mechanism. This integration of hypertext and database approach makes it possible to easily store
structured information, to connect it with any kind of artifact and to find them in different ways.

In this paper annotations and links were only discussed in the context of cooperative software
development but they can fulfill a large number of information management and communication
needs.

3.2 Policy-Driven Cooperation with Beyond-Sniff

While concepts and tools for informal cooperation are still neglected in today's software
engineering environments this is not the case for concepts and tools for policy-driven cooperation.
Approaches for the latter can be divided into two categories, as discussed above. Configuration
management is a mature technology which is applied successfully to the cooperative development
of large software systems. Process-centered software engineering is still in it's infancy although the
first tools supporting it are emerging on the market.

Our Approach

Based on practical experience we decided to support with Beyond-Sniff a conventional
configuration management approach. Beyond-Sniff supports currently a hard-coded model of
cooperation but the infrastructure was designed to make it possible to integrate a process-control
engine later on.

Beyond-Sniff supports pessimistic and optimistic cooperation as discussed above. Pessimistic
cooperation means that small teams of 2-3 developers synchronize by locking files to be edited.
Optimistic cooperation allows developers to work autonomously on copies of a project which are
merged at well defined points in time.

Optimistic Policy-Driven Cooperation

Projects define the level of granularity on which developers are cooperating with Beyond-Sniff. A
project consists of all artifacts which are relevant for the development of a certain software system.
Projects can be structured in a tree of subprojects and they are explicitly defined.

A revision is a project in a well-defined state of development. A project comprises all its
existing revisions. The term revision is based on the model of orthogonal configuration
management [Rei89]. Every revision has an owner, initially the creator of the revision. Access to
revisions is limited by a set of privileges which are controlled by its owner. Three kinds of
privileges can be distinguished: copy, read, and modification privileges.

Optimistic cooperation is always carried-out based on a working project. A working project is
created by checking-out a revision so that it is possible to browse or evolve it. Cooperation on
working projects is initially limited by the access privileges of the corresponding revision.

Developers with read privilege can read, duplicate, and annotate all artifacts of a working
project which gives them the possibility to participate in informal cooperation. Developers with
copy privilege can participate in optimistic cooperation. Optimistic cooperation is started by
creating a copy of a working project with the ProjectManager. This copy is recognizable as such
and its creator has full modification privilege.

- 8 -

After a number of developers have evolved working copies of a working project they have to
be merged into a new revision. Based on the latter a new development cycle can be initiated. The
evolution of a revision is therefore guided by its owner who grants privileges, who monitors
progress on the various working copies, and who merges the working project in sensible intervals
into new revisions.

Usually optimistic cooperation is restricted to developers who are connected with a high
bandwidth LAN. Beyond-Sniff allows optimistic cooperation for developers being connected by
low bandwidth WANs (minimally an e-mail connection). This is achieved by transparently
replicating working projects between sets of sites. A replica is a complete copy of a working
project. It is transparently created when a remote developer with read privileges opens it for the
first time. Access to replicas is always restricted to reading. Sets of replicas are automatically
updated after annotations are attached at an arbitrary site.

If a remote developer has the privilege he can draw a working copy, the same way as in a LAN.
Before merging the owner of the working project opens the remote working copy which is then
replicated to the site of the working project.

Figure 3 illustrates a slightly simplified example of an optimistic cooperation with Beyond-
Sniff. Project descriptors have to be interpreted as follows: project name, number of working copy,
number of revision. A working project of project X revision 1.1 is located at Site 1. A working
copy (X 1 1.1) is drawn locally. A developer at Site 2 opens the same working project which
results in the replication of the latter and he draws a working copy (X 2 1.1). While decoupled
development on the two working copies at site 1 and 2 is going on another developer at site 2
decides that project (X 2 1.1) is the ideal starting point for a new unrelated project. He therefore
duplicates it, resulting in the creation of a new project Y. After a consistent state was reached on
both working copies the owner of the working project decides to merge them. He opens the merge
tool which then results in the transparent replication of the remote working copy (X 2 1.1). After
merging he creates a new revision and checks it out as working project (X 0 1.2). A new
development cycle can be started.

Site 1 Site 2

Project
X 0 1.1

Project
X 2 1.1m

er
ge

Project
X 0 1.1

Project
X 1 1.1

replicate

copy

copy

replicate

merge

Project
X 2 1.1

Project
Y 0 1

du
pli

ca
te

Figure 3. Policy-driven optimistic cooperation with Beyond-Sniff

Tool Support for Policy-Driven Cooperation

Beyond-Sniff currently provides the following tools for the management of projects. The
ProjectEditor serves to define structure and artifacts of a project and to drive integrated version-
control tools. The ProjectManager serves to manage revisions, working projects, working copies,
and replicas, to administrate privileges and to drive the integrated configuration-management
system.

The merging of projects is a central task of any kind of optimistic cooperation. Beyond-Sniff's
TurboMixer provides support for comparing and merging working projects/copies on a high

- 9 -

abstraction level. It visualizes differences with colors and pictograms on project, symbolic and
textual levels and there are several abstraction levels on which both symbolic and textual
differences can be browsed.

Figure 4 shows the TurboMixer in comparing three working projects of consecutive revisions,
ordered by age from left to right. The structure of every working project is visualized as a tree and
the classes are listed above them. New, changed, and deleted elements are visualized the same way
in the tree and in the list. The semantics of the pictograms and colors is described in the lower left
corner.

Figure 4. TurboMixer visualizing differences in structure and classes

3.3 Related Work

In the area of CSCW there is a large number of published synchronous approaches such as
synchronous editing of documents and video conferencing but there are no approaches that have
achieved a relevant level of practical application besides video conferencing systems. Dewan
proposes in [Dew93] to apply different synchronous approaches such as synchronous editing and
debugging to cooperative software engineering. This approach, however, does not address the
relevant problems of cooperative software engineering, as discussed in Section 2.

Some programming environments such as Cadillac [Gab90] and Field [Rei90b] already
incorporate annotations. In contrast to our approach their annotation concepts are simplistic means
for connecting some information with source code. They are tool specific and cover only a small
part of the artifacts. Moreover, these environments are aimed at single developers.

We do not know about tools similar to TurboMixer. Only Grass describes in [Gra92] similar
concepts and ideas.

- 10 -

4 Realization of Beyond-Sniff
Beyond-Sniff consists of a set of cooperating tools used by a set of developers running on a set of
workstations. The biggest challenge in implementing such a distributed system is tool integration,
i.e., the integration of different kinds of tools and services in a way that they can cooperate as
seamlessly as possible (from the user's point of view). The field of tool integration can be
subdivided into control, data, and user interface integration (e.g., [Sch93, Gab90]). Control and
data integration are discussed in this section.

4.1 Overview of Services and Applications

Beyond-Sniff consists of an extensible number of services and tools. It is beyond the scope of this
paper to give a comprehensive overview of them. Figure 5 provides an architecture overview that
also shows a number of important services and tools.

Applications

Service
Broker

DataDictionary &
ServiceDictionary

Annotation &
Link Service

SymbolTable
Service

ProjectManager
Service

Infrastructure
Services

Sniff TurboMixer Beyond-
ClassBorwser FileMergerAdministration

Tools

Services

Message Bus

Figure 5. Architecture overview.

4.2 Control Integration

There are many topics that are relevant for the quality of a control integration approach. Scalability
is a key property for the integration mechanism of a platform that runs a large number of services
and tools. Beyond-Sniff achieves scalability by using point to point communication for request
processing between clients and services and multicasts between services and their clients for
notifying updates. The efficiency of the communication between services and applications is
therefore independent of the number of running clients and services.

Beyond-Sniff provides a configurable two-level hierarchy of service brokers to connect clients
with services as depicted in Figure 6. The global service broker directly connects clients and
global infrastructure services, which exist only once per installation, (e.g., the UserService).
Otherwise it forwards the request to a second-level service broker responsible for a certain type of
service (e.g., ProjectServices). A second-level service broker knows all active services of a certain
type. Upon the receipt of a request it checks whether the requested service is already running and
the service can support a further client. Otherwise a new service is started and connected.

A further degree of indirection has been implemented to make it possible to replace some kind
of services without modifying the clients. In ordering a service from the global service broker a
prospective client does not specify what kind of a service he needs but he specifies the
functionality he requires. The global service broker looks up which kind of service provides the
requested functionality before negotiating a connection.

Service brokers are implemented based on a specific framework. To implement a new service
broker it suffices to specify when a service can support a further client and how it is started.

- 11 -

TurboMixer

ProjectManager
Service Broker

SymbolTable
Service Broker

Global
Infrastructure

Services

Global Service Broker

ProjectManager
ServiceProjectManager

ServiceProjectManager
ServiceProjectManager

Service

SymbolTable
ServiceSymbolTable

ServiceSymbolTable
ServiceSymbolTable

Service

Service Usage

Service Broking

ServiceDictionary

Service Broking

Figure 6. Service broker hierarchy.

4.3 Data Integration

Data integration between services and applications on the Beyond-Sniff platform is based on a
federated approach. There is no global data model, and each service is responsible for the
consistency of its own information. Each service provides its information in a standard way, as
generic object graphs. The data model of each service is described by an object graph and
managed by the central DataDictionary. Beyond-Sniff object graphs are language independent.
They can be represented simply and efficiently in different programming languages.

The generic way to obtain information from a service is to send it an OQL query [Cat93]. The
service evaluates the query against its database and returns an object graph as the result.

Every service defines it own data model, which can be extended by clients. This is an important
requirement for generic services because it is usually impossible to design a complete data model
from the beginning. It is, for example, impossible to know in advance all the different kinds of
information that tools want to store about project artifacts. If this flexibility is missing replication
of functionality and data will result. This is clearly undesirable.

Beyond-Sniff provides a framework which makes it possible to implement new standard
services with a minimal effort. The framework comprises, among others, the management of
object graphs, the evaluation of OQL queries, locking, recovery, and a standard update interface.
To implement an information service using an object graph database it suffices to override the
methods for loading and storing the data, and to define the data model.

4.4 Related Work

In comparing different approaches for the integration of applications the relevant differences are
usually found in the way that control and data integration are organized.

Message dispatchers (e.g., [Rei90a]) are today the most widespread approach to control
integration. The best known of them, the HP-Softbench message dispatcher [Cag90], is almost a
defacto industry standard. The basic idea underlying the message dispatcher approach is that
services and applications communicate by sending strings to each other. These strings are not
transmitted over a point-to-point connection but they are sent to the message dispatcher which
forwards them to interested processes. Each process interested in a certain kind of messages
installs a pattern with the message dispatcher. If a message matches a pattern it is forwarded to the
corresponding process.

- 12 -

This approach works well if a small number of tools exchange a small number of messages
from a manageable number of types. It does not scale for two reasons. The central message
dispatcher becomes a bottle neck, and the lack of explicit protocols makes it difficult to determine
the pattern to be installed to receive a certain kind of messages (and only these). Beyond-Sniff
does not have scalability problems. Its clients and services communicate over point-to-point
connections, and it provides a precise service broker mechanism, as discussed in Section 4.2.

Currently many approaches to data integration are under discussion. Certain research papers
propose the construction of a global data model which is mapped to the local data models of the
services (e.g., [Sar92]). This approach is conceptually attractive but it is unlikely that it will be
applicable on practical problems in the near future. Another approach is to standardize data
integration. The most prominent standard is PCTE [Wak93]. The basic idea underling PCTE is to
store all relevant information in one database with a unified data model. This is only realistic for a
relatively small percentage of the information about a real world software system. For this reason
PCTE concentrates on storing information about artifacts. The artifacts themselves are stored in
the file system and interpreted by the corresponding tools. First implementations of PCTE such as
Emeraude [Eme91] are commercially available and applied for real-world tool integration.

PCTE takes a heavy-weight approach to data integration and ensures data consistency to a large
degree. It provides only a part of Beyond-Sniff's functionality. Services providing large amounts
of information such as the SymtabService are beyond the scope of PCTE. PCTE and Beyond-Sniff
therefore take different approaches to data integration. PCTE is a centralized approach focusing on
consistency. Beyond-Sniff is a federated system with emphasis on lightweightness, extendibility
and flexibility.

4.5 State and Further Proceeding

We implemented the first Beyond-Sniff prototype in 1992 to validate the feasibility of our
approach. Based on this experience we rewrote large parts of the infrastructure, which is now
mature enough that Beyond-Sniff is used on one host by multiple developers cooperatively. It is
used for its own evolution.

The next step is to replace the message bus to make it possible to use Beyond-Sniff
cooperatively on several hosts. In parallel, the tools running on Beyond-Sniff will be evolved.

While implementation on the support for cooperation over large distances and low bandwidths
has not started yet, we implemented GTS [Maf94], a generic transport-layer-independent group-
communication mechanism.2 GTS guarantees the reliable exchange of information between
groups of sites. It is the technical foundation on which we intend to realize the planned
functionality.

5 Conclusions
Software systems are most often developed in teams. Teamwork implies cooperation and therefore
also coordination needs. We identified two forms of coordination, policy-driven and informal
coordination. Conventional configuration management addresses the more obvious need for
policy-driven coordination. Pessimistic or optimistic approaches can be distinguished. Informal
coordination is neither addressed in theory nor supported by tools in practice.

In a rather different area, CSCW investigates the problem of computer supported cooperative
work. Combining ideas from both fields leads to a broadened view that we call Cooperative
Software Engineering (CSE).

2 GTS was developed in a cooperation between University of Zurich, UBS/UBILAB, and Siemens
Munich. The project was sponsored by the Swiss Federal Commission for the Advancement of
Scientific Research (KWF).

- 13 -

We are currently working on Beyond-Sniff a platform and tools for cooperative software
engineering which explicitly supports CSE. Beyond-Sniff provides a number of tightly integrated
services and tools. Sniff, one of the tools, is in widespread use today. The TurboMixer, another
example, is a novel approach to ease the burden of comparing and merging large amounts of code.
Besides services and tools Beyond-Sniff also provides the infrastructure needed to integrate large
numbers of services and tools. Our work is not yet finished, but we made some important steps
towards a future cooperative software engineering environment.

6 References
[Bis92a] Bischofberger WR: Sniff - A Pragmatic Approach to a C++ Programming Environment. in

Proceedings of the USENIX C++ Conference, Portland, Oregon, Aug. 1992

[Bis92b] Bischofberger WR, Pomberger G: Prototyping-Oriented Software Development – Concepts
and Tools. Springer-Verlag 1992

[Bis94] Bischofberger WR, Kofler T, Schäffer B: Object-Oriented Programming Environments:
Requirements and Approaches. in Software – Concepts and Tools , Vol. 15 No. 2, Springer-
Verlag, 1994

[Boo94] Booch G: Object-Oriented Analysis and Design with Applications. Benjamin/Cunnings
Publishing Company, 1994

[Cag90] Cagan MR: The HP Softbench Environment: An Architecture for a New Generation of
Software Tools; Hewlett-Packard Journal, Vol. 41, No. 3, 1990

[Cat94] Cattell RGG (ed.): The Object Database Standard: ODMG-93; Morgan Kaufman Publishers,
1994

[Dew93] Dewan P, Riedl J: Toward Computer Supported Concurrent Software Engineering. IEEE
Computer, January 1993

[Eme91] Emeraude: Emeraude V12 User Manual; 1991
[Gab90] Gabriel R. P. et al.: Foundation for a C++ Programming Environment. In Proceedings of C++

at Work-90, Secaucus, New Jersey, 1990
[Gol89] Goldberg A, Robson D: Smalltalk-80–The Language; Addison-Wesley 1989
[Gra92] Grass JE: Cdiff: a Syntax Directed Differencer for C++ Programs. in Procs. of the USENIX

C++ Conference, Portland, Oregon, Aug. 1992
[Gru94] Grudin J: CSCW: History and Focus; IEEE Computer, Vol. 27, No. 5, May 1994
[Hir94] Hiroshi I, Minoru K, Kazuho A: Iterative Design of Seamless Collaboration Media. in

Communications of the ACM, Vol. 37, No. 8, August 1994
[Kai87] Kaiser GE, Kaplan SM, Micaleff J: Multiuser, Distributed, Language-Based Environments. in

IEEE Software, Vol. 4, No. 6, Nov. 1987
[Kai93] Kaiser GE, Popovich SS, Ben-Shaul IZ: A Bi-Level Language for Software Process Modeling.

in Procs. of the 15th ICSE, 1993
[Mad91] Madhavji NH: The Process Cycle. in Software Engineering Journal, September 1991
[Maf94] Maffeis S, Bischofberger WR, Maetzel KU: GTS: A Generic Multicast Transport Service.

UBILAB Technical Report 94.6.1, 1994
[Mal94] MaloneTW, Crowston K: The Interdisciplinary Study of Coordination. in ACM Computing

Surveys, Vol. 26, No. 1, March 1994
[Ols91] Olson GM, Olson JS: User-Centered Design of Collaboration Technology. in Journal of

Organizational Computing, Vol. 1, No. 1., 1991
[Ost87] Osterweil L: Software Processes are Software too. in Procs. of the 9th ICSE, 19987
[Pom93] Pomberger G, Blaschek G: Software Engineering – Prototyping and Object Oriented Software

Development. Carl Hanser Verlag, 1993
[Rei90a] Reiss SP: Connection Tools Using Message Passing in the Filed Environment; IEEE Software,

July 1990
[Rei90b] Reiss SP: Interacting with the FIELD environment. Software – Practice and Experience, Vol.

20, S1, 1990
[Sar92] Sarkar M, Reiss SP: A Data Model for Object-Oriented Databases; Technical Report CS-92-

56, Department of Computer Science, Brown University, 1992
[Sch93] Schefstöm D., van den Broek G.: Tool Integration–Environments and Frameworks; John

Wiley & Sons, 1993
[Wak93] Wakeman L, Jowett J: PCTE–The Standard for Open Repositories. Prentice Hall, 1993

