
GTS: A Generic Multicast Transport Service

Silvano Ma�eis, Walter Bischofberger, and Kai-Uwe M�atzel

Information Technology Laboratory (UBILAB)
Union Bank of Switzerland

and
University of Zurich

Department of Computer Science

UBILAB Technical Report 94:6:1

June 1994

Abstract

Many nation-wide distributed applications can pro�t from process-groups and reliable multicast com-
munication, but most operating systems available today fail in providing the primitive operations needed

by such applications. In this paper we describe a highly con�gurable, generic multicast transport ser-

vice (GTS), which supports the implementation of group based applications in wide-area settings. The
GTS is unique in that it makes possible reliable, order-preserving multicast on arbitrary communication

protocols, including e-mail. As another distinguishing mark, messages can be sent to processes even

when they are temporarily unavailable, which is achieved by making messages persistent. We further
propose an object-oriented system design consisting of adaptor objects interconnected to form a protocol

tree. Adaptor objects o�er a common interface to dissimilar communication protocols, and make it easy

to incorporate new protocols into the GTS. Currently, the GTS is being used in a cooperative software
engineering environment and in other distributed applications. The GTS is available for anonymous ftp.

1 Introduction

1.1 Motivation

Groupware, computer supported cooperative work, and other kinds of distributed systems stimulate the need
for structuring activities around process-groups [3, 15] and reliable, order-preserving multicast [8]. We have
developed a novel communication substrate, called the Generic Multicast Transport Service (GTS), which
enables the implementation of process-group based, fault-tolerant, heterogeneous applications on wide-area

networks. As the main abstraction, the GTS provides reliable order-preserving multicast, reliable point-to-
point communication (unicast), and process-groups. A variety of transport protocols are supported and new
protocols can be incorporated into the service easily. The GTS is unique in its 
exibility, in that it does
not require that communicating processes be available at the same time, and in that it allows temporarily
unavailable processes to remain in their process-groups. To that purpose, the GTS will spool messages on
non-volatile storage and deliver them to their recipients as soon as they become available and register with
the GTS again.

1.2 Related Work

Examples of state-of-the-art toolkits o�ering process-groups and reliable, order-preserving multicast are
Consul [12], Electra [10], Horus [14], Isis [4], and Transis [1]. The default policy of these toolkits is
to remove failed members from their groups. A recovered process will have to re-join the system, and to
request the current application state from a group member. If all members of a group fail, processes which

1



depend on the group cannot make progress any more. This scheme is well-suited for applications requiring
minimal communication delays and where interacting processes are available at the same time.

In contrast, the GTS aims at supporting asynchronous applications which tolerate long communication
delays, and where the send operations of a process must progress even when recipient processes are un-
available owing to a planned o�-time or failure. Cooperative software engineering applications, software
update protocols, multimedia messaging systems, distributed document servers, and replicated �le archives
are examples of such applications. The GTS is tailored for applications spawning several LANs, though
applications running within the boundaries of one LAN can be accommodated as well. Moreover, the GTS
does not compete with the forementioned toolkits, but can be used in conjunction with them. Simply put,
our scheme is well-suited for applications where con�gurability, heterogeneity, and persistent messages are
more important than minimal communication latency.

2 The Generic Multicast Transport Service

2.1 System Model

In our system model we distinguish two kinds of processes: on one side are the GTS servers, which implement
message spooling, reliable multicast, and unicast communication. On the other side stand the enduser
applications, which use the GTS. A GTS server, along with the applications connected to it, makes up what
we call a cluster (Figure 1). A cluster is contained in one LAN. If an application in cluster A wants to send
a message to an application in cluster B, it submits it to server SA, which in turn sends it to server SB .
Finally, SB delivers the message to the destination application.

Cluster A
Cluster B

Cluster C

SA

SB

SC

WAN

Figure 1: A typical GTS system con�guration. Si denotes the GTS server for cluster i. Applications are
running on the workstations attached to the servers.

The GTS o�ers reliable unicast and multicast communication, even when the underlying communication
protocols are unreliable. In multicast communication, a sender application submits a message to a group of
receiver applications. The GTS guarantees that all members of the group receive the message, and that all
receivers deliver all messages in exactly the same order, which is called totally ordered multicast . In contrast
to most existing toolkits, the GTS also supports groups of process-groups. In WAN settings, this is useful
for structuring large groups as a hierarchy of separately maintained sub-groups.

Applications may become unavailable as a result of hardware faults, software errors, planned o�-times,
client mobility, or human lapses. A message to an unreachable destination is retained in the spooler of the

2



GTS server which observes the fault1. The server will try to deliver the message until it succeeds or until
the destination is detached permanently from the GTS by a system administrator. As a message travels
through the GTS, there will always be one copy of it in some spooler, and the server holding the copy is
responsible for delivering it to the destination server or to the destination application itself, if it runs in the
server's cluster. If a GTS server fails, then nothing is lost since messages, group membership lists, and other
important data are persistent.

2.2 URL Based Addressing

The GTS supports an unrestricted set of protocols, for instance TCP, IP, AppleTalk, Mach Messages, ATM,
and even e-mail. The API which programmers are confronted with is independent of the underlying trans-
port protocols, and reliable multicast interprocess-communication is feasible even with e-mail as transport
medium. In consequence, the addressing scheme employed has to be simple and 
exible. We decided to
adopt the Uniform Resource Locators (URL) proposed by the Internet Engineering Task Force. GTS URLs
obey the following general form:

GTSprotocol://GTSserver:localAddress/memberID

for example:
gts-tcp://claude.ifi.unizh.ch:9999/77, or
gts-email://ifi.unizh.ch:gts/77.

The �rst part of a URL denotes the protocol a GTS server will use to deliver messages to the destination
server. The second part contains the address of the destination server in a protocol-dependent notation.
The localAddress is an internal address, e.g. a port number, a directory, or an e-mail account. Finally, the
memberID is an integer value which denotes the application process or process-group the message is directed
to.

2.3 Reliable Multicast Protocol

The multicast protocol employed is similar to the one implemented in the Amoeba [9] operating system. To
guarantee total ordering and reliable delivery, a GTS server acts as sequencer for the groups it maintains. To
submit a multicast, an application point-to-point delivers the message to its GTS server. By inspecting the
memberID of the destination URL, the server identi�es the message as a multicast request, assigns the next
multicast sequence number to it, looks up the URLs of the group members in a local membership list, and
reliably delivers the message. Delivery is by one separate unicast message per group member if the transport
protocol does not support multicast, or by one message for the whole group if all members can be reached
by the same protocol, and given that the protocol supports multicast (e.g., IP with multicast extensions [2]).

2.4 Persistent Data Facilities

When an application wants to send a message, it always submits it to the GTS server in its cluster. The
server will �rst spool the message to avoid losing it in case of a failure. Thereafter, the message is delivered
to the destination server by the transport protocol speci�ed in the destination URL. As soon as the remote
server has acknowledged the receipt, the local server can delete the message from its spooler. If the remote
server is unavailable, the message is retransmitted periodically until the server acknowledges the receipt.

Thus, the GTS server represents a central point of failure. This problem is alleviated by the fact that
relevant data are kept on non-volatile storage and that, once recovered, a GTS server can carry on with
its work. Moreover, one or several backup servers can be con�gured per cluster and applications will auto-
matically switch to one of them when the primary GTS server becomes unreachable. Membership lists for
the groups maintained by a server are also persistent. A group membership list contains the URLs of the
destinations which make up the group, and the members of a group need not support the same protocol.

1by a timeout mechanism or by a hint from the operating system.

3



3 Design of the GTS

Several design goals guided the development of the GTS: (a) to support a wide range of protocols and
operating systems, (b) to make it easy for programmers to incorporate as yet unsupported protocols, (c)
to make it easy to add functionality such as message compression and public-key encryption, (d) to allow
programmers to include their own API, and (e) to devise a 
exible design which other people can apply to
their own systems. This section focusses on the design of the GTS server, which is implemented in the C++

programming language.
A GTS server is structured in a way similar to the x-kernel [13] and to Electra [11]. Each GTS

server consists of a collection of adaptor objects plugged together to form a protocol tree as depicted in
Figure 2. The root object (GTSroot) communicates with the client applications running in its cluster. Leaf

Actor Crypt

Compress ChecksumEncode

UUCP

EMail

TCP

IPmulticast
. . .. . .

GTSroot

Interface
Adaptor

Utility Adaptors Protocol
Adaptors

Figure 2: A sample protocol tree.

objects, called protocol adaptors, perform unreliable message passing on speci�c communication protocols.
The utility adaptors in the middle area carry out tasks such as reliable communication (the Actor object),
encryption, compression, encoding, integrity check, and so forth in a generic fashion. Each adaptor object
passes the messages it receives down the tree to one of its child adaptors. A message is routed through
the tree according to its destination URL until it reaches a protocol adaptor. Finally, the protocol adaptor
transmits the message by the protocol it encapsulates.

At the destination GTS server, the message is received by a protocol adaptor and is passed up the tree.
If needed, it is checked, decoded, decompressed, decrypted, and assembled by the utility adaptors. Finally,
the received message arrives at the GTSroot and is transmitted to the destination application in the cluster.

Adaptor objects are coupled abstractly to simplify the task of con�guring a protocol tree. Adaptors are
interconnected by the methods each concrete adaptor class inherits from the Adaptor abstract base class.
The resulting class hierarchy is shown in Figure 3. Owing to this 
exible system design, more than 90% of
the GTS' program code could be realized in a protocol and operating system independent way.

4 Programming Interfaces

Enduser applications are linked with a communication stub that governs the interaction with the local server.
This stub consists of an interface adaptor connected to a protocol adaptor. The interface adaptor serves as
API to the programmer, whereas the protocol adaptor is used to communicate with the GTS server (with
the GTSroot object, more exactly) by a reliable LAN protocol. Actually, two di�erent APIs are provided:
SimpleApi, which o�ers the interface below and CorbaDII, which o�ers an interface compatible with the
CORBA Dynamic Invocation Interface [7]. The CorbaDII class di�ers from the SimpleApi class in that
it speci�es operations to marshal parameters and to send a message to an object representing an abstract
service.

4



Adaptor

InterfaceAd UtilityAd ProtocolAd

C
ry

pt

A
ct

or

U
U

C
P

E
M

ai
l

T
C

P

IP
m

ul
tic

as
t

G
T

S
ro

ot

S
im

pl
eA

pi

C
he

ck
su

m

E
nc

od
e

C
om

pr
es

s

C
or

ba
D

II
Figure 3: Adaptor inheritance hierarchy.

class SimpleApi: public InterfaceAd f
public:

// non-blocking send:
boolean send(URL destination, const Message&);

// blocking receive:
boolean receive(OUT Message&);
// non-blocking receive (polling):
boolean receive(OUT Message&, OUT boolean& dataReady);

// create a group on the local server:
boolean groupCreate(OUT unsigned int& groupID);
// destroy a local group:
boolean groupDestroy(unsigned int groupID);
// obtain the members of a local group:
boolean groupGetInfo(unsigned int groupID, OUT List<URL>& members);
// join a local or remote group:
boolean groupJoin(URL server, unsigned int groupID, URL newMember);
// leave a local or remote group:
boolean groupLeave(URL server, unsigned int groupID, URL newMember);

g;

5 Application Experiences

In a joint e�ort, the Union Bank of Switzerland, Siemens-Nixdorf, and the University of Zurich are developing
Beyond-Sniff, a novel platform to support cooperative software engineering environments. Beyond-Sniff
employs the GTS as communication substrate for information propagation and data replication over wide-
area connections. Beyond-Sniff provides a proper infrastructure for distributed, cooperative work. It o�ers
tools and frameworks for implementing service based architectures, in which services and large amounts of
data can be shared. On top of the Beyond-Sniff platform a cooperative software engineering environment
has been built. New tools focussing on cooperation were implemented and SNiFF+ [5, 6], a full-
edged
C/C++ programming environment has been ported to Beyond-Sniff.

Development of the GTS was initiated in this context to elaborate the communication primitives required
for supporting distributed workgroups in their cooperation on the same software engineering projects. The
GTS is used to deliver the project relevant information to project members residing in di�erent LANs by
reliable and totally ordered multicast. The GTS has several indispensable properties which are necessary to
support cooperation between distributed workgroups within Beyond-Sniff: (a) Reliable unicast and totally

5



ordered multicast that works even when members of a group are not available at the time information is
being distributed. (b) Support for disconnected operation and thus for client mobility. (c) Support for
di�erent communication protocols including e-mail as the \smallest common denominator" protocol. (d) A

exible adaptor architecture to ful�ll di�erent security requirements.

6 Conclusions

In this paper we presented a novel communication substrate, called the Generic Multicast Transport Service

(GTS), which was developed at the University of Zurich and at the Union Bank of Switzerland. The
GTS is in
uenced by results of projects such as Amoeba, Electra, Isis, and x-kernel, and enables the
implementation of fault-tolerant distributed applications in wide-area settings. It is di�erent from previous
work on process-group based systems in that it focusses on widely distributed rather than on local resources,
and in that groups of applications can interact even when some applications are not available at the time
information is being distributed. Moreover, a 
exible, object-oriented system design consisting of adaptor
objects interconnected to a protocol tree has been devised. This system design permits to issue reliable
multicasts on arbitrary transport protocols such as TCP/IP or even e-mail. New transport protocols can be
incorporated easily by developing adaptors for them.

At the Union Bank of Switzerland and at the University of Zurich the GTS is being used to build
heterogeneous distributed applications interconnecting several clusters, each containing UNIX systems and
PCs. We run group based applications even with e-mail as transport protocol, since it often is the only
means for communicating with mainframes or PCs. As an example of an application employing the GTS we
described Beyond-Sniff, a platform to support cooperative software engineering environments. The GTS
is particularly well-suited for asynchronous, group-based applications which tolerate communication delays
and repair times. In our experience, groupware serving asynchronous forms of collaboration requires the
kind of system support this paper proposes.

6



References

[1] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A Communication Sub-System for
High Availability. In 22nd International Symposium on Fault-Tolerant Computing (July 1992), IEEE.

[2] Baker, S. Multicasting for Sound and Video. Unix Review (Feb. 1994).

[3] Birman, K. P. The Process Group Approach to Reliable Distributed Computing. Communications of
the ACM 36, 12 (Dec. 1993).

[4] Birman, K. P., and van Renesse, R., Eds. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, 1994.

[5] Bischofberger, W. R. Sni� { A Pragmatic Approach to a C++ Programming Environment. In
USENIX C++ Conference (Portland, Aug. 1992), The USENIX Association.

[6] Bischofberger, W. R., Kofler, T., and Schaeffer, B. Object-Oriented Programming Environ-
ments: Requirements and Approaches. Software | Concepts and Tools, Springer-Verlag 15, 2 (1994).

[7] Digital Equipment Corp., Hewlett-Packard Co., HyperDesk Corp., NCR Corp., Object

Design Inc., SunSoft Inc. The Common Object Request Broker: Architecture and Speci�cation, Dec.
1991. Revision 1.1, OMG Document Number 91.12.1.

[8] Hadzilacos, V., and Toueg, S. Fault-Tolerant Broadcasts and Related Problems. In Distributed

Systems, S. Mullender, Ed., second ed. Addison Wesley, 1993, ch. 5.

[9] Kaashoek, M. F., Tanenbaum, A. S., Hummel, S. F., and Bal, H. E. An E�cient Reliable
Broadcast Protocol. ACM SIGOPS Operating Systems Review 23, 4 (Oct. 1989).

[10] Maffeis, S. Electra { Making Distributed Programs Object-Oriented. In Proceedings of the Symposium
on Experiences with Distributed and Multiprocessor Systems IV (San Diego, CA, 1993), USENIX.

[11] Maffeis, S. A Flexible System Design to Support Object-Groups and Object-Oriented Distributed
Programming. In Proceedings of the ECOOP '93 Workshop on Object-Based Distributed Programming

(1994), R. Guerraoui, O. Nierstrasz, M. Riveill, Ed., Lecture Notes in Computer Science 791, Springer-
Verlag.

[12] Mishra, S., Peterson, L. L., and Schlichting, R. D. Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs. Tech. rep., Department of Computer Science, The University of
Arizona, 1993.

[13] Peterson, L., Hutchinson, N., O'Malley, S., and Rao, H. The x-kernel: A Platform for
Accessing Internet Resources. IEEE Computer 23, 5 (May 1990).

[14] van Renesse, R., and Birman, K. P. Fault-Tolerant Programming using Process Groups. In
Distributed Open Systems, F. Brazier and D. Johansen, Eds. IEEE Computer Society Press, 1994.

[15] Ver��ssimo, P., and Rodrigues, L. Group Orientation: A Paradigm for Distributed Systems of the
Nineties. In Proceedings of the Third Workshop on Future Trends of Distributed Computing Systems

(Apr. 1992), IEEE Computer Society.


