
Global Business Objects:
Requirements and Solutions

Walter Bischofberger1, Michael Guttman2 and Dirk Riehle1

1 Ubilab, Union Bank of Switzerland
Bahnhofstrasse 45, CH-8021 Zurich

2 Genesis Development Corporation
10 North Church Street, 4th Floor West Chester

PA 19380 USA

e-mail: {Walter.Bischofberger, Dirk.Riehle}@ubs.com, mguttman@gendev.com

Developing world-wide distributed object-oriented systems poses a number of
difficult problems. In this paper, we summarize some of these problems as a set
of requirements and we present our software architecture that addresses them.
Our software architecture is reflective in all its key abstractions which is a pre-
requisite to successfully satisfy the requirements. Furthermore, it defines a set
of common capabilities and standard implementations. Key capabilities comprise
support for persistence, migration, event handling, transactions, hooking up in-
spection, debugging and security mechanisms. A mainstream banking applica-
tion which conforms to the architecture is currently being developed at UBS,
with Genesis as the lead consultant. Ubilab is focusing on the research aspects
of the project such as type and domain model evolution, world-wide web inte-
gration, and introducing higher-level abstractions of software architecture which
go beyond single classes and objects.

1 Introduction and Motivation3

Union Bank of Switzerland (UBS) is a large globally operating bank. Its operations require
more and more world-wide distributed applications. New applications must integrate with
old applications and must be prevented from turning into legacy applications themselves. To
address these problems, we are working on a homogenous, reflective object-oriented soft-
ware architecture. This architecture provides both a framework for developing new applica-
tions and for wrapping and integrating existing systems.

In this paper, we present some requirements for this architecture which we consider to be
particularly important. These requirements are: support for evolution from the very first day,
flexible use and integration of existing and new middleware, availability of generally useful
capabilities to improve design and code reuse, and the possibility to introduce new software
architecture abstractions which go beyond single classes and objects. We present a software
architecture which fulfills these requirements, as we believe.

The architecture definition is centered around a distributed object-oriented virtual machine
which provides a small number of reflective key abstractions. The virtual machine consists
of a reflective kernel which provides the “primitives” of evolution. It allows to change, re-
place, and thereby evolve single type interfaces and implementations while providing several
versions at the same time. Based on these primitives, we intend to support evolution on a
larger scale: types usually do not evolve in isolation, but rather in groups of related inter-
faces and implementations. These groups of types can either be partial or full domain mod-
els or infrastructure frameworks together with all their clients. This must be supported by
proper modeling notations and tools.

3 In Proceedings of the Ubilab Conference ’96, Zurich. Universitätsverlag Konstanz, 1996. Pages 79-98.

- 80 -

If a system cannot be shutdown for maintenance purposes, it is difficult to install and re-
place type interfaces and type implementations. Unfortunately, this is the case with most
non-trivial globally distributed systems. It is also very difficult to run integration tests for
new or changed applications. Within our reflective architecture, we propose to treat types as
first-class objects so that their installation, evolution and testing can be handled within
regular transactions. This is a big advantage of our approach, something not yet offered by
systems based solely on current industry standards like CORBA.

At first glance, building frameworks and business object models for large-scale distrib-
uted applications is not very different from the development of frameworks and business
object models for single process applications. However, it is obvious that the complexity
increases significantly because distribution requires developers to cope with all problems
inherent in distributed applications. We therefore want to apply—and enhance—today’s
collective experience in developing frameworks [Lew95] to develop globally distributed
systems.

It becomes considerably easier to develop frameworks if certain capabilities are guaran-
teed for all objects of any type. We have experienced this again and again in developing
frameworks based on the ET++ [Wei94] infrastructure or Smalltalk [Gol89] in contrast to
using pure C++ and its rudimentary libraries. Therefore, we decided to guarantee certain
key capabilities for every object of any type. These key capabilities provide support for per-
sistence, migration, event handling, transactions, hooking up of inspection, debugging and
security mechanisms and others more. For all such key capabilities standard implementa-
tions have to be available which can be replaced easily if necessary.

Whenever we present our architecture we have to argue why we invest all this effort to
solve problems that already seem to have been addressed by CORBA-compliant systems.4, 5

We believe that current CORBA-based systems fall short in several aspects, in particular:

• Evolution support requires reflective capabilities like type system transactions that have
not even been addressed by CORBA.

• Guaranteeing runtime behavior is almost impossible with CORBA, in particular since it is
provides a rather vague notion of QOS (quality of service), which is supposed to distin-
guish implementations of different vendors. No semantics and runtime behavior specifi-
cations are available and can be utilized so that it is impossible to manage and therefore
guarantee more than the most trivial aspects of runtime behavior.

• CORBA provides a broad range of useful services. Unfortunately, CORBA took the ap-
proach of C++ of not prescribing any kind of functionality to be provided by any object
of any type. Thus, every project will both reinvent what is required by every object to
work properly, as well as implement this anew. This limits design and implementation
reuse.

4 In this paper, we focus our critiques of existing commercial object systems upon CORBA because it is

the best known and most widely accepted standard for distributed object computing. However, the same

critiques can be made of other commercialized object models, for example, Microsoft’s OLE, the C++

object model, etc.

5 These discussions remind us very much of earlier—partially religious—discussions such as why the Mac-

intosh is better than an IBM PC or why PL/1 was not the last programming language that was developed

although it solved all problems

- 81 -

In short, the problem with CORBA is what it doesn’t yet specify—a coherent set of models
and policies for managing rapidly evolving, large-scale distributed systems.

UBS is undertaking this effort in form of an informal cooperation between GINS/GITA,
a division of UBS, and Ubilab, the information technology laboratory of UBS. The authors
of this paper are three of the four authors of the key software architecture specification
document [Bis96]. As the lead consultant in the GINS/GITA project, Genesis Development
Corporation has introduced the basic model of a reflective virtual object machine [Gen95] as
a proposed element of the UBS Systems Architecture, developed based on Genesis’ many
years of experience in large-scale distributed object systems. Earlier this year, a prototype
has shown the feasibility of the approach in a limited setting.

Ubilab is focusing on the research aspects of the project. We will work on evolution
support, evaluate and devise frameworks, integrate world-wide web support into the archi-
tecture, and prepare the grounds for introducing higher-level abstractions of software archi-
tecture on the system and business domain level.

In Section 2 of this paper we review the requirements for a software architecture sup-
porting global business objects. Section 3, 4, 5 and 6 first present and then discuss our so-
lutions in form of a reflective, distributed, object-oriented virtual machine. In Section 7 we
compare our work with other approaches. In Section 8 we draw our conclusions and outline
how we will proceed further in this project.

2 Detailed Requirements
Developing world-wide distributed object systems poses a number of challenging require-
ments and problems, which we discuss in this section. The process of developing the ar-
chitecture specification discussed in the next section was intertwined with our discussion of
the requirements for it. Even though we had done some preceding analysis, the specification
of the architecture could not have been separated from the analysis of the requirements. This
process heavily drew on the experience of the involved people.

We identified the following main requirement categories:

• set of basic capabilities and services,

• support for large scale software development,

• introducing new software architecture abstractions,

• support for graceful evolution,

• reusability of standard implementations,

• integration with existing infrastructure.

We discuss the issues from a research perspective by detailing what is desirable, not neces-
sarily by what is possible with today’s concepts and techniques. An example is the need for
object space transparent transactions, that is transactions which are not limited to database
execution contexts. Generic transactions are a requirement, although, it is obviously a hard
research problem to implement them reliably.

- 82 -

2. 1 Set of basic capabilities and services

Every project and every application must provide certain capabilities and requires certain
services to build upon. We define the notion of capability and service before we discuss the
capabilities themselves. We clearly define the meaning of these words because we consider
other definitions to be confusing, in particular those introduced by CORBA [Sie96].

A capability offered by an object is some functionality which makes it usable for specific
clients within a domain model. It is expressed as an interface. Types the instances of which
offer this capability inherit from this interface. Examples are the capability of an object to
provide a passive data representation of itself or the capability to announce events about state
changes. Usually, objects offer more than one capability. Capabilities represent a contract
between the instances of a type and their clients. This functionality can be implemented in
various ways. It is, for example, possible that for performance reasons objects of the same
type use different implementations for the same capability.

A service provides some useful functionality to an unknown number of clients which are
not confined to be part of a specific domain model. A service is expressed as an interface
which clients directly use. Examples of services are naming and transaction management.
An object providing a service usually focuses on this single service. A service is usually part
of the underlying infrastructure. It has to implement its functionality but does not have to
fulfill all the requirements of a domain object.

More pragmatically speaking, a capability is something rather self-contained within an
object (which might be implemented with the help of some services), while a service is
something which is understood as some kind of front-end to sometimes very elaborate im-
plementations transcending the boundaries of the homogenous architecture and being inter-
twined with concrete middleware and systems software.

Some capabilities and services are business domain dependent, some are not. Not being
part of a business domain means being part of the system domain, the major focus of this
paper. Capabilities and services are the common foundation on top of which further frame-
works can be built. They have therefore to be as homogeneous and orthogonal to each other
as possible. There are many mandatory capabilities and services for any large distributed
system. Some of them are discussed in the following list.

• Naming and lookup of objects. It must be possible to name objects in order to obtain ref-
erences to them. Looking up the objects and potentially activating them should be hidden
from the client issuing the object request.

• Location independent object references. It must be possible to transparently reference
objects, no matter where they are located. This must not interfere with potentially more
complex architecture models. Less experienced developers must still be able to work on
the level of an object-oriented programming model while experienced developers should
be able to work on a software architecture model level.

• Request handling. In order to transparently hide evolution at the lowest abstraction level
requests must be first order objects. This means that some kind of dynamic invocation
interface [Sie96] is needed to construct and dispatch them. This very powerful mecha-
nism, however, is bothersome for the application developer and very inefficient if the
object on which an operation should be invoked is located in the same address space. For
this reason a layer is needed that hides the inherent complexity, that makes it possible to
optimize invocations, and that makes it possible to transparently map between compatible

- 83 -

but slightly modified parameter lists in different versions of a capability (see also
[Mae96]).

• Exception handling. Objects must be able to throw exceptions if some assumed precon-
dition about their execution and operation context is not met, and if this violation prevents
them from performing their operations properly.

• Object life-cycle management. Objects must be managed in several ways. It should be
easy to create them, manage them during their different life-cycle phases, and finally de-
lete them, either explicitly or based on some kind of garbage collection mechanism. In
order to cope with client applications which leave references dangling, for example due to
crashes, a possible strategy has to be more sophisticated than straightforward approaches
like reference counting.

• Version and variant management of interfaces and implementations. Minimal evolution
support requires both support for versioning object interfaces and implementations, as
well as allowing several variants and versions to run in parallel. If systems grow larger it
is also very important to be able to statically determine who uses which versions of
which interfaces. This is important in order to find out which components are affected by
a potential modification and which components have to be modified before support for an
old version of a type can be discarded.

• Object streaming. It must be possible to flexibly convert “life” objects into passive data
representations. In order to support this functionality a configurable capability is needed
that makes it possible to generically access the state of an object. For example, a passive
data representation of an object is required to transport it across networks or to display it
in a debugger. Another potential client of such a capability is an algorithm that generically
stores objects in a relational database.

• Event notification. Objects must provide means for clients to register their interest in be-
ing notified about changes of state. This state must be defined in the object’s interface as
its abstract state. Furthermore, interest registration mechanisms have to be provided.
Event notifications can also be used to develop tools such as debuggers and monitors.
For this application it must be possible to register interest in more generic or restrictive
events such as the dispatching of a certain request to any object or the dispatching of a
request with certain parameter values.

• Transaction handling. It must be possible to define larger units of execution, namely
transactions, which are guaranteed to leave the system in a stable state, either doing
nothing or finishing successfully. These transactions should work transparently on the
object system in a similar way as they do with today’s databases. The challenge of im-
plementing transaction support for distributed object-systems is considerably bigger than
for distributed databases because not all objects modified during a transaction must be lo-
cated in a database. For this reason transaction mechanisms providing different degrees
of reliability for different kinds of objects are needed.

• Replication and group communication. It should be possible to replicate services in order
to achieve increased reliability and performance. To support replication, a reliable group
communication protocol and messaging mechanism must be available.

• Concurrency control. Objects issuing a request should be able to specify whether a re-
quest is to be carried out synchronously or asynchronously. Furthermore, fine-grained
synchronization, thread and process control should be possible.

- 84 -

• Persistence. Conceptually it has to be possible to make every object persistent in any kind
of database. The persistence mechanism must, therefore, be designed to make it possible
to store objects in any kind of media be it an object database, a relational database or a
file.

• Security. It must be possible to control in a fine-grained way which objects owned by
which user should be allowed to issue which request in order to access or manipulate a
resource. It is impossible to design a generic security mechanism that works in every en-
vironment for every security enforcement strategy. For this reason a security mechanism
has to provide a capability that makes it possible to implement any kind of security policy
based on any kind of newly designed or available security mechanisms.

This list of requirements represents what has been discussed and (partially) specified in our
architecture specification document. Many other possible services are not included, such as
querying and licensing services as specified for CORBA 2.0 [OMG96].

Further functionality that cannot be represented by a single capability or service such as
configuration management, explicit domain models and explicit reflective software architec-
ture models will be elaborated below.

2. 2 Support for large scale software development

Every project and every application of a certain size requires comprehensive tools to be un-
derstood, properly managed, developed and evolved. Not only does this include tools for
editing, browsing, building, configuration management and distributed cooperative software
development [Bis92, Bis94, Bis95], but also a set of comprehensive analysis and debug-
ging tools. Debugging tools are particularly pertinent for the ever increasing complexity of
distributed systems [Brü93, Deb88].

A software architecture specification and a conforming implementation must therefore
explicitly provide hooks to allow smooth integration of tools. It should be possible to utilize
these hooks to develop generic and project specific tools and to integrate them into the over-
all development process.

2. 3 Support for evolution

The centralized information systems of large international companies such as banks are
slowly turning into distributed systems either by expansion or by integration. They tend to
be big and to become bigger over time. Complex dependencies between object implementa-
tions, services, middleware, legacy applications and systems emerge, which prohibit the
simple replacing of single components. We have identified several requirements for system
evolution that have to be addressed if we don’t want future distributed applications to be-
come legacy systems on the day of deployment.

• It must be possible to provide in parallel several versions of an object, component or
service interface and implementation, and to have criteria at hand to decide which version
to use for a given client.

• It must be possible to determine statically who is using which versions of a capability or
a service.

• It must be possible to make new interfaces and implementations available at a pre-
specified point in time at all sites of a distributed application.

- 85 -

• It must be possible to specify dependencies between several interfaces and implementa-
tions in order to describe and configure domain models as higher level entities of evolu-
tion.

• It must be possible to test new implementations in the context of existing infrastructure
and applications since it is most of the times hard, if not impossible, to build an adequate
testing environment.

2. 4 Abstractions for software architecture modeling

Large systems require adequate concepts, models, notations and techniques to be efficiently
discussed, represented and operationalized. Objects and types are very powerful concepts,
but they need to be extended and made more concrete in order to describe domains better.
On a system domain level, concepts like pipe and filter better capture the intent of a design
and its implementation than just “plain objects.” The new field of software architecture deals
with the definition of such concepts and languages to express them adequately [Sha96].

For example, some systems must provide a pre-defined level of responsiveness or
throughput, must perform certain tasks within a given time limit, etc. Many of these guar-
antees can be formalized sufficiently in order to serve as evaluation and feedback criteria at
runtime. To make these criteria subject to management, they have to be made explicit in a
homogenous way. This might be done in several ways, for example by making the criteria
accessible as service interfaces. However, representing concepts as interfaces is not enough:
Such concepts needs a precise definition, and frequently additional models and techniques
for using them in discussions and calculations. If adequate interfaces, concepts and tech-
niques exist, it becomes possible, for example, to generically implement tuning based on
support for load balancing and object migration, or to give users adequate feedback about
expected system behavior in terms of performance, etc.

Sometimes, such new concepts must be introduced on a meta-level: It can be expected
that the notion or Role will be an integral part of next-generation object models, so that we
must prepare for its homogenous integration with existing object models today [Rie96c,
Ree96, Mae96]. Introducing such new abstractions requires existing architecture support in
order not to build everything anew.

2. 5 Reusability of generic implementations

In order to make it possible to develop large-scale distributed object systems it is not suffi-
cient to simply provide developers with an object broker and a set of predefined capability
interfaces and services. It is as important to provide them with implementation level frame-
works that generically implement those capabilities which are provided by all objects as well
as capabilities provided by many domain objects. Furthermore, these frameworks must be
readily configurable to allow the developers to explicitly state a set of policies for overall
management of the objects involved.

The domain of distributed objects is generic to such a degree that large scale reuse is pos-
sible, but generally only within one management domain, for example within a single com-
pany. This is, because the implementation of many capabilities depends heavily on the avail-
able middleware components and their configuration which is often company specific and
has grown over time.

- 86 -

2. 6 Integration with existing infrastructure

New systems must integrate with existing legacy applications, middleware and operating
systems. A new software architecture must both utilize existing functionality, because not
everything can be invented from scratch, and integrate and run in parallel with existing sys-
tems, because those cannot be replaced at once.

2. 7 Conclusions

The requirements discussed in this section are what we consider mandatory for an architec-
ture supporting the development of any kind of global business objects. We know that it is
hard to come up with designs and implementations that fulfill all requirements. Fortunately,
this is not necessary from the beginning because most applications have only a subset of the
requirements. If the main abstractions of architecture prove to be mature enough it will be
possible to evolve the designs and implementation once it is necessary.

The next section presents the software architecture we designed to fulfill these require-
ments. It shows a single unifying theme, the use of reflection, which we use as a means for
fulfilling the requirements. After the architecture descriptions we review how we think to
meet the requirements.

3 Overview of the GBO/GNORF Architecture
GBO (Global Business Objects) is the name of the project carried out to prove the viability
of the architecture for practical application in bank projects. GNORF (Global Networked
Objects based on a Reflective Framework) is the preliminary name of the research project
pursued at Ubilab. GNORF deals with the research aspects discussed above.

In this and the next two sections we review our architecture specification. This section
gives an overview of how the different parts of the architecture fit together as depicted in
Figure 1. The second section discusses the components of our object model and the third
section presents the architecture of the virtual machine and its system architecture which is
used to implement the object model.

BOA

SOA

COA Core Object Architectu re

System Object Architecture

Business Object Architecture

Figure 1: High-level view of the GBO/GNORF architecture

The basic idea underlying the GBO/GNORF Architecture is to develop a virtual machine for
distributed object systems. It supports a meta-level architecture similar to CLOS [Kic93a,

- 87 -

Kic93b] on top of which any kind of domain object model can be implemented. Objects are
instances of types, and types control their instances by managing them and their implemen-
tations.

The architecture specification is based on type specifications which are independent of
any particular programming language. In fact, the architecture specification defines its own
object model using an IDL (interface definition language) which is imposed then on a con-
crete system environment and programming language object model.

Important features of this virtual machine are:

• It abstracts distribution by providing location independent object references.

• It provides the type AnyObject which serves as the supertype of all other types. It defines
and generically implements many of the capabilities asked for in Section 2.

• Types are implemented as objects themselves. They handle the dispatching of operation
invocations on their instances. This can be used to coherently integrate any kind of legacy
implementation into a GBO/GNORF architecture implementation.

The hourglass of Figure 1 represents the main three layers of a GBO/GNORF based sys-
tem.

• The topmost layer represents the Business Object Architecture (BOA) domain. Each
business defines its own BOA. Every BOA consists of a number of types defining the
supported business objects, their functionality and their relationships with each other.

• The middle layer, the Core Object Architecture (COA), provides the most important types
of the virtual machine which define, for example, the generic capabilities and the meta-
level architecture.

• The bottom layer, the System Object Architecture (SOA) implements the virtual machine
types defined in the COA and offers further service interfaces which encapsulate existing
computing environments.

Systems compliant with the architecture specification can be viewed as sets of distributed
objects which interact through well defined interfaces. Each object represents an instance of
a business or system domain concept and exerts proper behavior. Business or system do-
main concepts are represented and modeled as types the instances of which are the just men-
tioned business or system objects. This kind of architecture has many advantages. The most
important of them are:

• It makes it possible to design and implement distributed business objects as sets of in-
stances of types which utilize a virtual machine that takes care of most of the difficult as-
pects of distribution.

• Applications are portable between SOAs as long as all business objects are implemented
based on COA types and services only, and as long as the different SOAs have similar
quality-of-service profiles.

• The COA type AnyObject guarantees that all objects provide many capabilities such as
persistence, migration, transaction support and event handling for which default imple-
mentations are inherited automatically.

- 88 -

• Applications are developed in a homogeneous world while most of the complexity of
distribution is dealt with in the virtual machine. This diminishes the gap between analysis
and design considerably.

• Instead of writing new code implementing the functionality of a type it is possible to bind
it to legacy code. This means that the abstractions of legacy applications can be explicitly
modeled as BOAs and exported into a homogeneous distributed object world.

We believe that requirements like support for large scale software development, evolution,
and guaranteeing runtime behavior can only sensibly be achieved with a software architec-
ture which is reflective in all its key abstractions. If this is not the case, one will always face
situations which operate on implicit information and thus are based on potentially costly
work-arounds.

4 GBO/GNORF Core Object Architecture (COA)
The COA defines the types and the semantics of the functionality the SOA provides to the
BOA as explained above. This section starts with an overview of the COA types, their func-
tionality and their relationships. This overview is followed by a number of subsections de-
scribing the key types in further detail.

4. 1 Overview

All types inherit from AnyObject, which defines the capabilities offered by any object used
in the context of the virtual machine. These are, among others: streaming, persistence, mi-
gration and event handling. Figure 2 shows the most important types which are part of the
COA.

At the top of Figure 2, type AnyObject is displayed. Any other type must be a subtype of
AnyObject, for example system level types like Request, Location or AnyWriter, or domain
types like Customer, Portfolio or Account.

TransactionRequest

UnitOfWork

AnyWriter

Event AnyReader

rectangles represent types

triangles represent subtyping/
inheritance

lines represent a use-relationship, a bullet at the
end represents a cardinality of 1..n

all types in this figure inherit directly or
indirectly from AnyObject

PropertyOperation

AnyType

ImplBinding ImplHandle

AnyObject

EventInterest

Figure 2: OMT diagram visualizing the central COA types and their relationships

- 89 -

Every type in the system is represented as an object. The interface of every type object is
defined by AnyType, a subtype of AnyObject. Thus, type objects are instances of the
AnyType type object. The AnyType type object is an instance of itself. Instances of type
AnyType use instances of the types Operation, Property, ImplBinding and ImplHandle to
explicitly represent interfaces and to bridge the gap between interfaces and the correspond-
ing implementations.

Type objects manage their instances. Type instances are usually implemented using con-
structs native to the host language. In the case of an object-oriented programming language,
the main implementation construct for implementing type instances are classes. A type object
knows how its instances are implemented through specific classes.

A type object, for example type Customer, manages the execution of requests on its in-
stances. A client provides both an object Reference and a Request object to the type object.
The Request object defines the operation to be called and the Reference object defines the
object on which the operation is to be executed. The type object dispatches the request to a
proper implementation of the referenced object.

Each object can provide a passive data representation of itself, which is used for trans-
porting objects between processes, for remote method invocation, for streaming objects to
files, etc. Explicit AnyReader and AnyWriter objects decouple the object to be read or writ-
ten from the reading and writing process and the concrete backend involved.

Every type defines in its interface which kind of events it announces and offers opera-
tions for clients to register interest in these events. An event results in an event notification
of all interested objects. Event notifications can be dispatched either synchronously or asyn-
chronously. An example of an asynchronous event is the notification that a certain operation
has been carried out. A typical example of a synchronous event is the notification that a cer-
tain operation is going to be carried out. In the latter case, the notified object gets the chance
to stop the invocation, for example to prevent a security violation, or to add a patch to the
operation.

The types Request and Transaction are subtypes of UnitOfWork which defines their exe-
cution interface. UnitOfWork instances can have subunits and define a protocol for execut-
ing atomic actions. Further subtypes elaborate the interface for different actions, be it single
requests or transactions based on two phase commit. The simple transaction protocol
(commit and rollback) as well as the two phase protocol are used as mixin types so that there
are transactional requests and two phase requests which support the respective behavior.

The specification for the COA addresses many more issues, including the meta-level ar-
chitecture, persistence, security, etc. In the next subsections we focus on the key aspects of
this architecture only and ask the reader to refer to [Bis96] for more details.

4. 2 Types and implementations

An object’s type is represented as a first class object which exists at runtime. It is responsi-
ble for most of what a compiler generates as code in statically typed languages: It instanti-
ates, manages and deletes its instances. It checks, controls and dispatches calls to its in-
stances, so that in principle every operation call is always routed via the type level. These
type objects are, of course, instances of further type objects, so that a structurally reflective
meta-level architecture results, much like the one found in CLOS [Kic93a].

Types can multiply inherit from further types, their supertypes, thereby becoming their
subtypes. We strictly adhere to a behavioral subtyping discipline [Lis88, Lis93] with the

- 90 -

only relaxation of allowing covariant redefinition [Mey92] the problems of which we intend
to address through the help of explicit system and domain model type checking.

A type can manage several instance implementations which it chooses according to inter-
nal policies or based on external specifications, compare [Rie95a]. Implementations can be
anything imaginable, including legacy applications—it is left to the type to dispatch an in-
coming request to an instance, and it can do so in what ever fashion it prefers. We have de-
signed, though, a standard implementation handling and binding mechanism for the most
common cases.

There is no need to define an equivalent of the Java interface concept since a strict inter-
face and implementation hierarchy distinction [Kil92, Por93] is inherent in our type system.

4. 3 References and requests

Objects know of each other via references. References are, from a client’s point of view,
black-box objects that serve as handles to the used object. A Reference object is interpreted
by the type object of the referenced objects dynamic type. The type object manages the map-
ping between references and implementation objects. Thus, the type object has complete
control over what it stores in it’s reference objects.

It is transparent to a client where a referenced object is located. This information is man-
aged by its type object or some appropriate manager object which is determined by the type
object. The type object, therefore, defines both how its objects are distributed and what kind
of information is stored in its references. This makes it easy to optimize distribution related
performance aspects by parameterizing type objects with different distribution strategies.

The execution of an operation of an object is triggered by first creating an explicit Re-
quest object which contains the operation’s name and its parameters, and then by telling the
target object’s type to execute the request on the instance indicated by a Reference object.
This rather elaborate and inconvenient process is usually hidden behind convenience inter-
faces of the Reference object so that a developer invokes a regular method in the implemen-
tation. Behind the convenience interfaces, any proper optimization can be done, depending
on the given circumstances. It is, for example, possible to invoke methods of local objects
directly, without the expensive creation of the implicit request object and the dispatching
through the type object.

An interesting issue to be considered is the level of granularity on which the discussed
object model is applied. Two extremes can be thought of. On the one hand, the model is ap-
plied to its fullest extent, with every concrete object being handled by the virtual machine.
Then, every request to any object is dispatched by that object’s type object, making the sys-
tem very flexible. Thereby, the architecture’s object model is fully adopted and the host lan-
guage’s object model is ignored.

In the other case, the virtual machine serves as a remote method invocation mechanism
which bridges between heavyweight implementation subsystems. These subsystems, just
like legacy applications, handle most of the arising issues internally using the programming
language’s object model. They rarely make use of the virtual machine but only use it for
communication calls between the subsystems.

Our request execution approach is conceptually similar to CORBA’s dynamic invocation
interface [Sie96]. However, our intention is not only to provide a dynamic means for creat-
ing and executing requests, we also want to make request and reference objects explicit for
further operationalization, for example as part of a transaction.

- 91 -

Requests can be synchronous or asynchronous, with the second option being hard to
fully implement, since it requires a full multi-threading model. Exceptions or out parameters
are propagated back with the executed request object. Some discussions of similar and re-
lated issues can be found in [Wol96, Arj96].

4. 4 Objects and values

Value types like Integer, Float, and String are kept separate and are not derived from Any-
Object. Conceptually, values are not objects, but the primitive elements of computation from
which objects can be built. Values have no identity. Since they are always copied, they are
always local, and no referential integrity has to be maintained. For value types only standard
data representation formats have to be defined so that they can be transported between proc-
esses.

A distinction between primitive and non-primitive value types can be made. A primitive
value type is a value type for which a direct language mapping exists, including integers,
floating point numbers, characters, etc. Non-primitive value types are types like Currency,
Amount, SocialSecurityNumber, etc. Being non-primitive means that values have to be im-
plemented as objects, because they have no direct language mapping. This allows the intro-
duction of domain specific value types.

Objects on the other hand have an identity. They define a state space, with each dimen-
sion representing a property and being identified by a property name. Every name can be
bound to a value, including references to further objects. An object never changes a value
but rather replaces the value bound to a property name with another value.

4. 5 Further important capabilities

Types model their interface explicitly as operation and property objects. Operations and
properties model the abstract state space of the type’s instances which have to be met by
every type instance implementation. This explicit and canonical model lets client objects
register interest in particular changes of an object’s state. A proper event notification mecha-
nism takes care that they are informed about changes in that particular aspect of the changed
object, compare [Gar93, Rie96a]. Requests and transactions are subtypes of UnitOfWork,
which, together with transaction protocol and two phase protocol classes, defines the inter-
face to different request and transaction variants. Further types are provided for object
streaming, persistence, security, etc. but are not discussed here. More detailed descriptions
can be found in [Bis96].

5 GBO/GNORF System Object Architecture (SOA)
A detailed specification of a concrete SOA is a document with well above 100 pages. The
goal of this section is to give a rough overview of how a SOA implementation refines the
hourglass architecture presented at the beginning of Section 3 and to give an overview of the
activities in the area of SOA development.

5. 1 System architecture and infrastructure mapping

In the SOA, the hourglass architecture of Figure 1 is refined to a layered architecture
[Bus96]. Business domain type implementations build on standardized domain types and
virtual machine types (the COA types of Section 4). The virtual machine type implementa-

- 92 -

tions build on SOA specific services, which in turn build on a specific computing environ-
ment. Note, that an implementation always refers to types which it is based on and usually
should not make use of a specific implementation.

A COA-compliant SOA implementation depends on several dimensions: It depends on
the chosen language, the available frameworks and libraries, and the existing computing en-
vironment. This triple defines the implementation space. For every language in every envi-
ronment a new SOA implementation has to be carried out. To avoid this proliferation of
variants one should confine oneself to a set of standard languages and middleware products.

Alternatively, one can design rather light-weight clients which are restricted to dispatch-
ing request objects to referenced objects in heavy-weight servers which incorporate the do-
main model and a fully implemented SOA. The only functionality that has to be implemented
for such a light-weight SOA is a Reference type and the mechanics of forwarding Requests
to the server. This approach seems particularly feasible with, for example, Java applets for
the world-wide web. Only a very small SOA implementation will have to be transferred to
the WWW-browser.

computing environment

system services

virtual machine

system domain types

standardized domain types

domain types

implementation unit,
for example a Smalltalk class

a type, here a domain type

Figure 3: System-level structure and layering

We will now examine the layers depicted in Figure 3 in more detail, starting from the bot-
tom:

The bottom layer represents the existing computing infrastructure. This can be applica-
tions, or existing middleware like network software and transaction monitors, or databases
like Oracle or ObjectStore, or CORBA compliant object request brokers like Orbix or Ob-
jectBroker. This is the “computing environment” layer as depicted in Figure 3.

- 93 -

On top of the computing environment, system services required for the implementation of
the virtual machine and domain applications are developed. These system services represent
a convenient and, in terms of abstraction, adequate encapsulation of the underlying middle-
ware in order to make the virtual machine more reusable across platforms and to make it
more robust with respect to changes in the environment. For example, one might use
CORBA services, or even traditional databases, networking services, etc.

The system domain types represent the interfaces to the virtual machine which imple-
ments them based on the underlying system services. These types are defined in the COA,
the core object architecture. These types and the layers below, that is the virtual machine im-
plementation itself, the system services, as well as the integration with the existing comput-
ing environment represents the SOA, the system object architecture.

Above the COA and SOA, the different Business Object Architectures (BOAs) are de-
fined. A BOA always depends on the business domain, and nothing can be said about its
requirements other than the system-level requirements already stated in Section 2.

While it seems best to let implementations refer to types only and let a BOA type imple-
mentation never refer to anything else than a COA type, it cannot be hold upright in practice.
Therefore, we allow developers to implement BOA types based on system services and even
the computing environment while at the same time making the dangers resulting from such
an implementation explicit. Migrating objects of types which require implementations bound
to a specific computing environment is not transparently possible and therefore limits the
power of the architecture implementation and the resulting system. However, flexibility,
completeness and economics have always to be weighted and measured against each other.

5. 2 Development activities

There are currently two different SOA development activities. In the GBO project a proto-
type has been implemented in Smalltalk which shows that it is possible to implement a basic
SOA in Smalltalk in about two human months. In its current version, the prototype is only
partially conformant to the actual architecture specification and omits some of the harder im-
plementation problems.

In the GNORF project we just started to implement a SOA prototype in Java. In imple-
menting this prototype we pursue two goals. One of them is to develop a working test envi-
ronment to experiment with various evolution support strategies. The other goal is to de-
velop an extremely light-weight Java SOA that can be run in various light-weight Java ma-
chines such as a WWW browser or a dedicated Internet terminal. Based on this, it should be
possible to quickly develop user interfaces that have all advantages of the WWW and Java.

Along the way, we expect to evaluate further research issues, for example how Java code
shipping can be utilized for providing location transparent implementations, and how well
the touted internet architecture, WWW-browsers and Java applets, work for large scale
systems.

6 Fulfilling the Requirements
In this section we review how we think that the architecture specified in Section 3-5 fulfills
our requirements discussed in Section 2. Some of these requirements were obviously easy
to satisfy while others will constitute the major part of our research work.

- 94 -

• Set of basic capabilities and services. Our architecture specification is built on top of a
reflective type system which defines many useful capabilities. These capabilities are pro-
vided by types at a well-defined point in the type hierarchy and therefore guarantee that
subtypes will offer these capabilities. Some of these capabilities are considered to be so
important that they are guaranteed to be provided by any object and therefore are part of
the interface of AnyObject. Next to capabilities, our architecture specification names a
number of services which are needed for a large distributed system [Bis96].

The definition of these capabilities and services was based on Genesis’ and Ubilab’s
experience, for example with object-oriented frameworks like ET++ [Wei94], Smalltalk
[Gol89, Smi95], Sniff and Beyond-Sniff [Bis92, Bis94, Bis95], and the Tools and Ma-
terials Frameworks [Rie95b, Rie96b, Bäu96]. We can draw here on CORBA as well. In
this respect, it was a straightforward work, even though experience with the on-going
projects will surely lead us to refine, extend and change the actual capabilities and serv-
ices specification.

• Support for large scale software development. The reflective architecture allows for very
fine-grained control and manipulation of the various aspects of a distributed system. We
consider this as a key which provides the hooks for general as well as project specific
tools to be incorporated into the overall software development process.

• Support for graceful evolution. Again, the reflectiveness of the type system allows us to
analyze and manipulate every important aspect of the type system, including a type’s in-
terface and implementation binding. This extremely flexible mechanism allows us to re-
place type interfaces and implementations both statically and dynamically and therefore
provides us with the basic building blocks to support system evolution.

It is not sufficient, however, to evolve and replace single types. It must be possible as
well to evolve sets of collaborating types, that is domain models. To achieve this, it must
be possible to both specify such a domain model as a modeling entity of its own as well
as to evolve it as such an entity. We will therefore develop proper domain modeling no-
tations and tools as well as transactions on the type and domain model space. Transac-
tions of this kind sound complicated at first but since all relevant abstractions are repre-
sented as objects, it should be possible to realize it as regular transactions.

• Introducing new abstractions of software architecture. This requirement was motivated
by the need to make domain specific abstractions of software architecture explicit in order
to control and manage them, for example for guaranteeing a certain throughput or per-
formance, maximum time of execution, or for optimizing runtime behavior, for example
through load balancing.

Moreover, an explicit software architecture model lets us view, discuss and check the
system at a higher level than basic object-oriented design allows us to do. It is clearly un-
derstood today that object-orientation itself does not deliver adequate abstractions for
modeling large distributed systems. Further concepts, including architectural styles and
patterns [Gar94, Sha95, Gam95, Cop95, Vli96] are needed to develop an adequate de-
sign vocabulary and make it explicit in software.

• Reusability of generic implementations. The clear separation of implementation from
types and their clear placement in the type hierarchy allowed us to provide reusable im-
plementations already for very generic types and therefore helps to fulfill our requirement
of implementation reuse and therefore increased productivity.

- 95 -

• Integration with existing infrastructure. Again, the clear separation of implementations
from their types makes it possible to hide any existing infrastructure behind it. The SOA
defines several levels at which existing legacy applications and middleware can be
wrapped. The SOA works as a broker, encapsulating existing infrastructure and making
it available to a large number of clients which should not have to know anything about
the underlying implementation.

A final implicit requirement was not to make developers change their thinking model. They
still should be able to work on an object-oriented modeling and programming level. The ar-
chitecture specification allows them to do so as long as it is sensible and possible. In those
aspects in which object-orientation is not a sufficient means of describing the system, devel-
opers will have to switch to proper software architecture models and their specialization in
their respective application context.

7 Related Work
The GBO/GNORF project draws on different areas of computer science, namely on soft-
ware architecture, object-oriented systems, frameworks and distributed systems. For this
reason it is impossible to do a more or less complete discussion of related work in this pa-
per. Such a discussion would be a book about software architectures in general and distrib-
uted object systems in particular.

In this section we focus on the area of distributed objects and discuss both homogenous
distributed object systems as well as CORBA, the OMG standard to integrate heterogeneous
systems.

In homogenous distributed object systems most aspects of distribution are covered by the
infrastructure and a developer implements distributed applications in almost the same way as
he or she implements single process applications. Examples of homogenous distributed ob-
ject systems are Portable Distributed Objects (PDO) from NeXT and Distributed Smalltalk
from IBM. Both products provide a high degree of location independence for objects on a
programming language level. From the point of view of simplicity these systems are almost
optimal.

The inherent problem of homogenous distributed object systems is that distribution is
handled by the underlying virtual machines or runtime systems. This makes it almost im-
possible to modify central design decisions such as what kind of information is stored in a
reference and how distributed objects of a type are best managed and garbage collected.
While this is no problem for small to medium sized applications it becomes a central issue in
developing globally distributed large-scale applications.

In the GBO/GNORF the developer can decide on the optimal mix of ease of use and
flexibility. The developers of new types (business objects) should be aware of the potential
of the type system and should optimize distribution behavior of important types extensively.
For the application developers that are applying the business objects it should be almost
transparent that they are distributed.

In comparing CORBA with GBO/GNORF we can clearly recognize the two different ap-
proaches. CORBA has grown over many years from a remote method invocation mecha-
nism into a standard for that tries to cover almost all aspects of distributed object systems.
Today, there are not only reasonable standards but also implementations of it.

- 96 -

The inherent problem of CORBA is that something planned to be a simple remote method
invocation mechanism has grown into a standard that tries to cover such diverse aspects as
management infrastructure, basic services and capabilities, and application area specific
frameworks. Due to the nature of standardization processes it was not possible (or intended)
to revise earlier standardized aspects while working on extensions. This has resulted, for
example, in a sometimes confusing terminology and in a number of capabilities and services
that have grown into a jungle of interfaces instead of an elegant framework. In
GBO/GNORF we had the advantage to start from scratch which gave us the possibility to
come up with a homogenous and much easier comprehensible architecture.

We think that it is possible to provide considerably superior support for the development
of distributed applications than what is provided by CORBA compliant systems. Nonethe-
less we appreciate the amount of work that has gone into the infrastructure of CORBA and
consider it sensible to use CORBA as the lowest layer on which an infrastructure that is
compliant with our architecture can be developed.

8 Conclusions and Future Work
In this paper, we have presented an overview of the GBO/GNORF project from a research
perspective. We have identified, described and motivated some of the key requirements for a
world-wide distributed object-oriented software architecture. These requirements include the
definition of a set of guaranteed capabilities and services, support for large scale software
development in terms of tools and hooks for tools, explicit modeling and representation of
software architectures, support for evolution of single types as well as frameworks, reus-
able generic implementations, and ways of integrating an architecture specification con-
forming implementation with an existing infrastructure.

We have also presented how we intend to fulfill these requirements by means of a reflec-
tive distributed object-oriented architecture realized through a virtual machine and accompa-
nying services. Such a reflective architecture contains all the “primitives” which we consider
to be important to reach the goals.

As of today, prototypes have proven that the implementation of several key elements of
the meta-level architecture is feasible. However, for many of the more advanced aspects of
the architecture a reference implementation has still to be done. Such aspects are object syn-
chronization, concurrency, replication and long transactions – each an interesting research
topic on its own.

Our short to medium range focus will rest on supporting type evolution as one of the
most pressing problems for systems of the envisioned size and required reliability. In paral-
lel, we will work on domain model representations and their operationalization. Finally, we
will work on introducing and operationalizing higher level software architecture abstractions
than types and relationships in order to more adequately help modeling business domains.

Acknowledgments
We would like to thank Dirk Bäumer, Dieter Schlegel, André Weinand and Heinz Züllig-
hoven for reading and commenting on the paper.

- 97 -

References
[Arj96] Arjomandi E, O’Farrell WG, Wilson GV: Smart Messages: An Object-Oriented

Communication Mechanism for Parallel Systems. COOTS-2, Conference
Proceedings. USENIX Association, 1996

[Bäu96] Bäumer D, Gryczan G, Lilienthal C, Riehle D, Strunk W, Wulf M, Züllighoven
H: The Tools and Materials Approach—Analysis, Design and Construction of
Interactive Object-Oriented Systems. To be submitted for publication

[Bis92] Bischofberger WR: Sniff – A Pragmatic Approach to a C++ Programming
Environment. USENIX 1992 C++ Conference Proceedings. USENIX
Association, 1992

[Bis94] Bischofberger WR, Kofler T, Schäffer B. Object-Oriented Programming
Environments: Requirements and Approaches. in Software–Concepts and
Tools, Vol. 15, No. 2, Springer Verlag, 1994

[Bis95] Bischofberger WR, Kofler T, Mätzel K, Schäffer, B: Computer Supported
Cooperative Software Engineering with Beyond-Sniff. SEE ’95, Conference
Proceedings (7th Conference on Software Engineering Environments)

[Bis96] Bischofberger WR, Guttman M, Riehle D, Sturmer C: Global Business Objects
System Object Architecture. Union Bank of Switzerland, 1996

[Brü93] Brügge B, Gottschalk T, Luo B: A Framework for Dynamic Program
Analyzers. OOPSLA ’93, Conference Proceedings. see also ACM SIGPLAN
Notices, Vol. 28, No. 10, 1993

[Bus96] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M: Pattern-Oriented
Software Architecture—A System of Patterns. John Wiley and Sons Ltd,
Baffins Lane, Chichester, 1996

[Cop95] Coplien JO, Schmidt DC (eds.): Pattern Languages of Program Design.
Reading, Massachusetts, Addison-Wesley, 1995

[Deb88] Miller B, LeBlanc T (eds.): Proceedings of the ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging. ACM SIGPLAN Notices,
Vol. 24, No. 1, 1989

[Gam95] Gamma E, Helm R, Johnson RE, Vlissides J: Design Patterns: Elements of
Reusable Design. Reading, Massachusetts, Addison-Wesley, 1995

[Gar93] Garlan D, Notkin D. Formalizing Design Spaces: Implicit Invocation
Mechanisms. VDM ’91, LNCS 551, Conference Proceedings. Berlin,
Heidelberg, Springer-Verlag, 1991

[Gar94] Garlan D: What is Style? Proceedings of the Dagstuhl Workshop on Software
Architecture, February 1995

 [Gen95] Genesis Development Corporation. Enterprise Object Architecture, October
1995

[Gol89] Goldberg A, Robson D. Smalltalk-80: The Language. Reading, Massachusetts,
Addison-Wesley, 1989

[Kic91] Kiczales G, des Rivières J. Bobrow DG: The Art of the Metaobject Protocol.
Cambridge, Massachusetts, The MIT Press, 1991

[Kic93] Kiczales G, Ashley JM, Rodriguez Jr JM, Vahdat A, Bobrow DG: Metaobject
Protocols: Why We Want Them and What Else They Can Do. Object-Oriented
Programming: The CLOS Perspective. Cambridge, Massachusetts, MIT Press,
1993

[Kil92] Killian MF. Trellis: What we have learned from a strongly typed language.
OOPSLA ’92, Conference Proceedings. see also ACM SIGPLAN Notices,
Vol. 27, No. 10, 1992

- 98 -

[Lew95] Lewis T: Object-Oriented Application Frameworks. Greenwich, CT, Manning,
1995

[Lis88] Liskov B: Data Abstraction and Hierarchy. OOPSLA '87 (Addendum), ACM
SIGPLAN Notices, Vol. 23, No. 5, 1988

[Lis93] Liskov B, Wing J: A New Definition of the Subtype Relation. LNCS 707,
ECOOP ’93, Conference Proceedings. Berlin, Heidelberg, Springer-Verlag,
1993

[Mät96] Mätzel K, Bischofberger W: Evolution of Object Systems or How to Tackle the
Slippage Problem. This volume

[Mey92] Meyer B: Eiffel. The Language. New York, London, Prentice-Hall, 1992

[OMG96] Object Management Group. CORBA 2.0, Common Object Services and
Common Facilities Specification. 1996

[Por93] Porter III HH: Separating the Subtype Hierarchy from the Inheritance of
Implementation. Journal of Object-Oriented Programming, Vol. 4, No. 9, 1992

[Ree96] Reenskaug T: Working with Objects. Manning, 1996

[Rie95a] Riehle D: How and Why to Encapsulate Class Trees. OOPSLA ’95, Conference
Proceedings

[Rie95b] Riehle D, Züllighoven H: A Pattern Language for Tool Construction and
Integration Based on the Tools and Materials Metaphor. in [Cop95]

[Rie96a] Riehle D: The Event Notification Pattern—Integrating Implicit Invocation with
Object-Orientation. Theory and Practice of Object Systems, Vol. 2, No. 1, 1996

[Rie96b] Riehle D, Schäffer B, Schnyder M: Design of a Smalltalk Framework for the
Tools and Materials Metaphor. Informatik/Informatique, Vol. 3, 1996

[Rie96c] Riehle D: Describing and Composing Patterns Using Role Diagrams. This
volume.

[Sha95] Shaw M: Comparing Architectural Design Styles. IEEE Software, Vol. 12, No.
6, 1995

[Sha96] Shaw M, Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996

[Sie96] Siegel J (ed.): CORBA: Fundamentals and Programming. Wiley, 1996

[Smi95] Smith DN: IBM Smalltalk: The Language. Redwood City, California, Benjamin
Cummings, 1995

[Vli96] Vlissides JM, Coplien JO, Kerth NL: Pattern Languages of Program Design 2.
Reading, Massachusetts, Addison-Wesley, 1996

[Wei94] Weinand A, Gamma E: ET++ — a Portable, Homogenous Class Library and
Application Framework. Computer Science Research at Ubilab. Konstanz:
Universitätsverlag Konstanz, 1994

[Wol96] Wolrath A, Riggs R, Waldo J: A Distributed Object Model for the Java System.
COOTS-2, Conference Proceedings. Usenix Association, 1996

