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Object technology enables software developers to implement flexible, extensible,
and adaptable systems. Important approaches to provide systems with these
features are frameworks and design pattern-guided design. Nevertheless,
object systems just like more traditional ones are hard to adapt to requirement
changes, which are unpredictable at the system’s development time. In this
paper, we discuss the potential of object technology to build systems that are
prepared for change. Evolution in general and undirected evolution of object
systems in particular are investigated. We elaborate system properties which
we consider crucial in consideration of adaptations to unpredictably changing
requirements. We consolidate our experience in a collection of design and
implementation ideas reaching from general to technically detailed. These ideas
are helpful for designers and developers who intend to make systems more
flexibly adaptable or to a certain degree self-adaptive to the requirement
changes. 1

1 Introduction

Software engineering is currently dominated by object technology. It is popular due to its
promise to foster reuse and reduce the effort necessary for system evolution.

Object-oriented design usually leads to appropriate levels of abstraction. Abstraction
makes the various layers independent from details of underlying layers. It is a generic
concept that can be applied at application, infrastructure, and system level.

Inheritance, abstract coupling, and abstract or late creation are examples of object-
oriented techniques that rely heavily on abstraction. Such techniques, together with widely
available capabilities like dynamic loading or code shipping allow to build flexibly
adjustable and dynamically extensible systems.

Are there limitations to the flexibility of object systems? Obviously, flexibility relies on
appropriate abstractions. Therefore, in order to find these abstractions, a system has to be
designed with flexibility explicitly in mind. Unfortunately, in consideration of evolution the
required flexibility is only partially known. Only few changes and steps of evolution can be
foreseen.

Obviously, we have to distinguish explicitly between predictable and non-predictable
evolution. Predictable means that at least the direction of the resulting impact of future
evolutionary steps is known. Therefore, we call this kind of evolution directed.
Unpredictable evolution is called undirected.

                                                
1 In Proceedings of the Ubilab Conference ’96, Zurich. Universitätsverlag Konstanz, 1996.
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Evolutionary steps, both directed and undirected, can have varying granularity. Usually,
large evolutionary steps imply minor subsequent changes. For example, the substitution of
an obsolete system component with a new one requires certain interface adaptations within
the remaining system. Minor changes which just refine or slightly modify system
components such as modifying a parameter list or adding new sub-classes cause a certain
amount of slippage between the affected components.

Experience shows that if slippage-causing changes can be smoothly carried out, big
steps become easier since they can be focused. Consequently, it is important to make
systems more robust against the slippage-causing minor changes in order to prepare them
for undirected evolution. According to this observation, we define the Slippage Problem of
Evolution as the problem to cope with these slippage-causing minor changes and
adaptations of undirected evolution.

The key to solve the Slippage Problem is a sophisticated system structure and flexible,
adaptable coupling mechanisms between objects. Independent from the actual system
architecture, a system needs a distinguished part which embodies the central design
decisions of the system. This part is called the design center. In slippage-tolerant design the
design center remains stable over time. This is accomplished by exclusively using highly
flexible, dynamic mechanisms to couple the objects of the design center with outside ones.
They are capable of absorbing most of the slippage-causing changes at runtime. Slippage-
tolerant design raises the issues of runtime failure. Therefore, system designers always have
to make a trade-off between flexibility and slippage tolerance on one hand and static
checking on the other hand.

This paper discusses the potential of object technology to build systems that are prepared
for change. We consolidate our experience in building complex distributed and non-
distributed systems (Sniff [Bis92], Beyond-Sniff [Bis95], and GBO [Bis96a, Bis96b]) and
integrate them with the work done by other researchers. We present a first result of our
ongoing efforts to provide an overall conceptual framework consisting of design rules that
guides developers in how to design and implement slippage-tolerant object systems. The
recommendations reach from general design ideas to detailed technical constraints.

The next section discusses evolution compatible system design related to directed as well
as undirected evolution. Section 3 presents the most critical aspects of object coupling.
Section 4 list various concrete approaches and mechanisms that should help developers to
solve the Slippage Problem in their own systems. Section 5 summarizes the content of the
paper and Section 6 elaborates related topics.

2 Evolution Compatible System Design

In this section we dicuss approaches how systems should be designed to support evolution.
More specifically, we show which properties an object system or a system in general must
provide in order to be prepared for evolution.

2.1 Preparing a system for evolution

When is a system well prepared for evolution? We consider a system well prepared if it
serves as an enactment of the following requirements:

(1) The system minimally depends upon its environment.
(2) The components of a system minimally depend upon each other.
(3) The necessary dependencies are represented exclusively by flexible mechanisms.
(4) The system consists of components which can dynamically be modified and extended.
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Consequently, a system design should reduce inter- and intra-system coupling to a
minimum and make the remaining coupling most flexible. The reduction of coupling has
been a well studied issue for years, especially in relation with modular software design
[Pom93] and research in module interconnection languages [Pri86].

In the following sections we discuss concrete approaches to a system design that meets
these requirements concerning directed and undirected evolution.

2.2 Directed evolution

Directed evolution means that we can forecast which requirements might change and what
the subject of change will be. Therefore, preparing a system for directed evolution requires
appropriate abstractions which make the subject of change an explicit part of the design.

Object-orientation provides us with the opportunity of fine-adjustable levels of
abstractions by means of sub-classing and abstract coupling. Abstract and partially abstract
classes can be used to explicitly model the subjects of change. Changes can be performed
by substituting objects of appropriate sub-classes for the original ones.

Design patterns as introduces by Gamma et al. [Gam95] embody substantial design
experience in dealing with the explicit modeling of change. Each design pattern proposes a
concrete solution for a specific class of design problems. The solution always considers at
least one particular aspect to be a subject of change. This makes design patterns very
valuable because the subject is not always obvious at the first glance.

Table 1 lists a few examples that show which design patterns could be used according to
the particular subject of change.

Table 1: Examples of design patterns for certain subjects of change

2.3 Undirected evolution

The problem of directed evolution can be tackled by explicitly modeling the subject of
change. This cannot be done easily in the case of undirected evolution because the subjects
of change are not explicitly known in advance. So, how can we prepare a system for things
we do not know?

Since we cannot make any assumptions about future changes, we cannot work towards
an appropriate problem-specific system structure. We propose to take a view of the
system’s structure which allow us to better assess the potential of changes of the various

Subject of Change Used Design Patterns

System configuration Abstract Factory

Implementations of particular functionality combination of Bridge
and Abstract Factory

Algorithms and abstract functionality combination of Strategy
and Abstract Factory,

Visitor

Object state, extensible functionality Decorator,
Extensible Object
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system parts. We can then instrument these parts with generic evolution support
mechanisms.

In order to find an appropriate system view, we consider a comparison between software
architecture and architecture useful.

Steward Brand [Bra94] studied the evolution of buildings. He explains a building to be
consisting of six shearing layers of change reaching from the geographical Site, over the
Structure to the Stuff comprising all furniture. Each layer has its own pace of change: Site
and Structure are almost static whereas Stuff is rapidly changing. Although these layers are
closely related to each other, he requires a building to be built in such a way that the layers
with high change rate can be changed or substituted without affecting the slower changing
layers. Obviously, the resulting design provides the building with a certain slippage
tolerance between the several layers.

We call a design that provides comparable mechanisms to Brand’s shearing layers and
flexible coupling between the layers Design for Slippage. Design for Slippage classifies
changes by means of the layer where they occur and therefore makes them better
predictable. The design decision manifested in the slowest layer are almost persistent and
dominate the architecture. We call that slowest layer the design center.

Considering a system under the point of view of Design for Slippage there are two
major issues:

• determine all system parts which belong to the design center
• determine the layer coupling mechanisms

2.3.1 Find a design center

If a software system is considered to have a design center, it can be successfully prepared
for undirected evolution.

Apart from shearing layers, every software system consists of various hierarchical
layers. At least, there are system, infrastructure, and application layers. Concerning this
hierarchical layering, a design center is considered to be specific for a particular layer.
Technically, the design center is a distinguished set of classes and object cooperation
structures as well as the most important layer-specific infrastructure services.

Consider a desktop manager like the Macintosh Finder. It provides navigation and
management support for hierarchical, recursive structures which are accessible from the
workplace. Examples are files and folders. Assume the design of the desktop manager
models this concept explicitly. The center of this design might be the desktop-item manager
hierarchy together with its dynamic behavior. Furthermore, it comprises cooperation pattern
between hierarchy and workplace manager as well as the workplace manager itself.

Figure 1: The edges of a design center
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Having a design center, we can consider anything outside the center a potential subject of
change. Generically ensuring the center’s stability means to make no assumption about the
nature of the outer parts. Therefore, the edges of the design center (Figure 1) are the place or
layer where slippage occurs.

Finding a design center requires an explicit decision about what belongs to the design
center and what does not. Unfortunately, there is only vague knowledge how to make these
decisions. To provide the developers with guidelines and rules of thumb for the decisions is
currently an area of active research. We just want to give two examples:

• The major software architectural styles2 of a system should be defined by its design
center. Therefore, everything considerably contributing to the architectural styles has to
be part of the center.

• Mostly, the major abstractions, especially the interaction behaviors, are richer and more
specific than a combination of single architectural styles. Therefore, additional to the
part defining these styles, all elements embodying the specific features belong to the
center.

2.3.2 Implement flexible object coupling

Slippage occurs at the edges of the design center. These edges are the coupling mechanisms
between the design center and the outside environment. Object coupling is caused by
depending on the interface of an object and the semantics of the related methods.
Furthermore, coupling to the outside environment includes depending on particular system
services, file formats, and so forth.

Consequently, a system has to be designed in such a way that the coupling mechanisms
between inside and outside objects as well as their system environment are change-
absorbing. This implies that the dependencies between the involved objects are reduced as
much as possible. Depending on particular system services and properties can usually be
reduced by introducing appropriate abstraction layers.

2.4 Tackling the Slippage Problem

Tackling the Slippage Problem means to support the finding of a design center and to
provide appropriately flexible object coupling. The general idea is to turn undirected
evolution into directed evolution on the meta-level by providing explicitly modeled,
adaptable mechanisms for flexible object coupling. The determination of the design center
guides where these mechanisms should be used. We focus on generic flexible object
coupling because finding the design center heavily depends on the particular system.

Although there are various degrees of sensible flexibility, the process of achieving
weaker coupling can be described as follows: The paradigm “Program to an interface”
[Gam95] has to turn into “Program to a self-describing language-, system-, and compiler-
neutral specification”. Intrinsic to this paradigm is that coupling decision are made dynamic
by shifting them to runtime. Changes such as interface modifications can so dynamically be
neutralized by automatically using call adapters.

Assume building a component of a distributed system. The component requires services
from other components of the system. Programming to an interface in this constellation

                                                
2 A software architectural style according to [Sha96b, Sha96a] describes design rules which identify the kinds

of components and interaction behavior patterns including all interconnection constaints which may be used
to build a system. The most popular ones are Pipes and Filters and Client-Server.
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means that the client component is implemented by using the interface definitions of the
service components. Programming to a specification means that the client component looks
at the rest of the system as one whole service provider. It specifies the services it needs and
does not care about which components actually provide which services and how requests
are mapped onto the interface of service components. In the ideal case, service components
and clients can be almost independently evolved without breaking the system.

Although the nature of object coupling is independent from any architecture, the design
and implementation of flexible object coupling mechanisms are not. The architecture
defines always additional requirements the coupling mechanisms have to meet. For
example, the coupling of distributed objects has to be more flexible than between object in
the same address space. Nevertheless, there are some generic mechanisms which can be
implemented with any kind of language or infrastructure. They can be profitably used for
the critical object couplings independently from the actual architecture.

3 The Aspects of Object Coupling

In this section, we present the major aspects of object coupling. They are relevant for the
development of flexible coupling mechanisms as asked for in Section 2.4.

In order to cooperate with each other, objects have to communicate. Communication
always requires an established connection between the objects and a common
understanding of the exchanged data. We consider object communication, connection
management, data representation, and dealing with dynamically changing objects most
important.

3.1 Object communication

Objects communicate by means of messages. Communication can either be anonymous or
directed. Using anonymous communication, the sender of a message knows neither who
the receiver of the message is nor if a receiver exists at all. Using directed communication,
the sender explicitly sends a message to a particular receiver.

The receipt of a message causes the call of a method of the object. Which method is
eventually called depends on the actual dispatch strategy. Furthermore, the behavior of an
object is determined by the fact whether sending messages is blocking or non-blocking and
whether the object or its methods are reentrant or not.

We consider the following aspects of object communication relevant:

• identity of the communication partners (known or anonymous)
• message format
• dispatch strategy
• blocking or non-blocking sending
• reentrance of object and methods

3.2 Connection establishment

Although in the case of anonymous communication the details of connection establishment
are hidden from the communicating parties, connection establishment takes place at least on
the infrastructure level. For directed communication, connection establishment is of
principal concern.
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Establishing a connection comprises:

• the lookup process
• the bootstrapping process of objects or object clusters

The lookup process defines how an object gets in contact with other objects. There are
object systems which do not explicitly support the concept of finding. It is hidden, for
example by giving an object reference as a parameter to a method and making the
referenced object known this way. Other systems make finding explicit for example by
means of an object broker.

The bootstrapping policy describes how an object system can be brought into a “ready-
to-use” state. This includes the initialization of an object or a cluster as well as its
registration with the system.

3.3 Connection termination

The issue of connection termination mainly deals with the question how the closing of
connections affects the involved objects. Objects can be permanent in the sense that they can
even exist without any other object connected to it, or objects can be automatically deleted as
soon as there is no longer any connection.

3.4 Data representation / data model negotiation

To exchange information, all involved objects have to agree on the format and the semantics
of the exchanged information. Concerning evolution, the main issues are the flexibility and
dynamic extensibility of the used representation as well as the support provided for explicit
data model negotiation. Consider the case that two objects exchange structured information
records. If the sequence or the number of the fields of the records is changed, this should
not affect the two objects, as long as they are not directly interested in this change. Explicit
data model negotiation allows to exchange necessary meta-information previous to the
actual data exchange and thereby provides a high degree of flexibility. Meta-information for
the previous example could contain the number and sequence of the record fields as well as
the name and the type of each field. If a field has been renamed, the receiver can gather this
information from the meta-information.

3.5 Modification of object structures and behavior

The above points are undoubtedly closely related to object coupling. This is not so obvious
for mechanisms to manipulate the packaging, the structure, or the behavior of objects.
Examples thereof are splitting a single object into multiple smaller ones, the extension of
objects by new state variables or new methods, and the substitution of methods. Obviously,
there must be an insurance that the changed and newly introduced methods participate in the
dispatching strategy discussed in Section 3.1. Such manipulations can either address a
single particular object, a group of objects, all instances or a certain class with all its sub-
classes.

Object structure and behavior modification introduces a distinct kind of object coupling:
(a) There is coupling by means of use- and aggregation-relationships. Methods are called
and objects are accessed according to the cooperation patterns of the objects. (b) There is
coupling by means of control relationships. Controllers manipulate the behavior or the
structure of controlled objects. Obviously, this can modify the ordinary use- and
aggregation-relationships.
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Major aspects of object structure and behavior modification are capabilities to deal with:

• state-space modification
• function/code shipping [Fla96]
• dynamic object packaging

4 Designing and Implementing Slippage Support

The following sections of this chapter discuss some specific designs and implementations
of flexible object coupling mechanisms. They are reaching from pure technical items such
as self-describing method calls to items which support a particular design idea such as
facades and roles. Each one of these mechanisms solves a particular set of the aspects of
object coupling discussed in Section 3. In particular, we discuss:

• self-describing method calls
• anonymous communication
• trading
• dynamic facades
• roles
• dynamic objects
• extended semantic data representation mechanisms

This chapter mainly shows design experience which can be found implicitly in various
existing systems. The given list of flexible object coupling mechanisms is not exhaustive.

4.1 Self-describing method calls

Method calls in object systems usually depend on a particular compiler, programming
language or infrastructure. Furthermore, they are highly sensitive to even minimal signature
changes such as renaming, adding, removing, or rearranging parameters. It is crucial for
slippage-tolerant systems to have method calls which are independent from a particular
system and resistant to these changes as much as possible. A very useful approach are self-
describing parameter lists. Such a list consists of associations of formal parameter, actual
parameter, and data type of the actual parameter. Therefore, self-describing implies
dynamically type-checked, position- and length-tolerant parameter lists.

In a system that does not provide any or insufficient runtime type information, this has
to be introduced by a semantic data representation mechanism. A semantic data
representation mechanism (SDRM) [Mät96] defines a dynamically extensible set of scalar
and composed data types together with an interface for creation, modification, testing, as
well as internalization and externalization of instances of these types. SDRMs are language-
independent and an excellent means of data integration.

This technique scales very well. Either an entire parameter list or parts of it can be self-
describing. The degree of flexibility is finely adjustable: where considered necessary, checks
are done statically, otherwise they are dynamic. Obviously, the adjustment is influenced by
the application specific trade-offs between possible runtime failures and flexibility.

The strategy of method dispatching relies on the types of the actual parameters.
Therefore, closely related to self-describing method calls are dispatch strategies specific to
the used SDRMs. They have to consider the dynamic aspects of the parameters’
representation.
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Related to Section 3, self-describing method provide flexible solutions for the following
aspects of object coupling:

• object communication
• message format
• dispatch strategy

• data representation

Examples of self-describing method calls

Flexible parameter list. Independence from the length of a parameter list can be
accomplished by using run-arrays as parameters, sequence- and length-independence by
using associative arrays or dictionaries. This is applicable in any object-oriented language.

Language feature. Programming languages usually provide some features for flexible
parameter list. The quality and the power of these features vary greatly.

C++ allows length-independent parameter lists by using ellipsis (varargs). RTTI
introduces type reflection and allows, combined with ellipsis, truly self-describing
parameter lists based solely on C++ language features [Str94].

Dylan [App96] provides various language features for slippage-friendly method calls.
First, Dylan provides complete runtime type information by representing classes as objects
like Smalltalk or ET++ [Wei94]. Second, a method definition determines the tolerance with
which the method is still callable. Dylan supports statically and latently typed parameters,
position and key word parameters, and formal parameters that are bound to a list of actual
parameters.

Existing SDRMs are either an integral part of a certain system or they represent a system
themselves.

CORBA [OMG96] defines an integrated SDRM, represented by the IDL data type any.
An IDL-any can contain any existing IDL type. Furthermore, the definition of CORBA’s
dynamic invocation interface (DII) is a good example for handling self-describing method
calls. The parameter list of a service request, which eventually is mapped onto a particular
method, is represented by a name-value-pair list (NVList). Each value is represented by an
IDL-any. Externalization of IDL-anys is defined by the CORBA Externalization Service.

NEWI [Sim94] is an integration environment for cooperative business objects (CBOs).
It has to cope with flexible data and control integration between distributed, heterogeneous
components. It tackles the problems by introducing a SDRM called Semantic Data Streams
(SDS).

In contrast to IDL-any and SDS, Anythings as well as the Any Framework [Mät96] are
independent SDRMs. Using Anys, a self-describing parameter list can be modeled by
taking one or multiple AnyFrames as parameters. An AnyFrame is basically a dictionary
that is structured according to a defined schema. This allows very efficient conformance
checks of the transferred actual parameter. Anys are implemented in various programming
languages.

4.2 Anonymous communication

A step beyond flexible method invocation is to reduce the necessary amount of knowledge
even more. Communication requires an established connection between at least two objects:
the sender and the receiver. Communication can therefore be made more flexible by freeing
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the sender of a message from the knowledge of the receiver’s identity or the number of
receivers. For example, this is of very interest for change propagation in object systems or
more generally, for event distribution. Anonymous communication can be achieved by
using a message bus.

A message bus enacts a communication policy known as publish/subscribe
communication. The sender object publishes a message. All interested subscribers receive
this message. The sender object only has to know the message bus. How an object can
subscribe for messages depends on the particular message bus. There are various flavors:
publishing/subscribing using subjects/keywords, patterns of message structure, patterns of
message content, and so forth3.

Message bus communication requires just a few prerequisites: The message bus has a
fairly simple view on objects: they can only publish messages and subscribe to messages.
Objects as well as the message bus have to deal with messages: construction, parsing,
deletion. All communication objects as well as the message bus have to agree on the
message representation. SDRMs are an adequate means for representing messages.

Message busses are very flexible. The connection between objects can be transparently
established and terminated without any additional knowledge except the message bus API.
Subscribers or publishers can be substituted on the fly without affecting any other part of
the system.

Message bus architectures have a few drawbacks: Depending on the actual message bus
architecture, there is one single point of failure and a potential bottleneck. Existing
communication patterns between objects are no longer explicitly visible in the system
design. Causal relationships between various distributed events are hidden internally. For
example, in order to get a request/reply behavior, the request publisher as well as the request
subscriber(s) have to register themselves with the message bus prior to emitting the request.

Anonymous communication provides a slippage-tolerant solution for

• anonymous object communication
• connection establishment
• finding /lookup

Depending on the kind of used message bus, the following issues are addressed as well:
• bootstrapping
• connection termination

Examples

Anonymous communication is used in various contexts. Well known examples are change
propagation in the sense as described by the Observer design pattern [Gam95] or implicit
method invocation in object systems as described in [Rie96]. The Mediator design pattern
[Gam95] resembles the message bus architecture.

Systems actually implementing a message bus, already have a long tradition. Linda
[Mat88], a system originally developed at Yale University defines a so-called tuple space.
Processes can publish tuples and subscribe to tuple patterns. Newer systems are for
example the Rendezvous Software Bus [Oki93], ToolTalk [Sun93], HP SoftBench [HP92],

                                                
3 A message bus describes a particular broadcast universe, whereas all subscribers which are interested in the

same set of messages form a multicast universe. Therefore, we consider in this paper group communication a
special case of a message bus.
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and OrbixTalk [Ion96]. The CORBA Event Channel Service makes anonymous
publish/subscribe styled communication available for each CORBA application. Typical
application areas of the above mention systems are tool integration (ToolTalk, HP
Softbench) and the distribution of large amounts of information to a dynamically changing
set of receivers such as trading floors (Rendezvous Software Bus).

4.3 Trading

For some applications anonymous communication is not applicable. For example, if an
object requests various different but maybe related services and it wants to be sure that all
services are provided by the same server(s), then the message bus is not an option.

In those applications a connection between objects should still be established at runtime.
In contrast to anonymous communication, the objects are aware of the notion of an explicit
connection. An object has to query for a service provider. If there is at least one object that
can provide that service, the requester receives a reference to this object. This reference
reveals only those properties of the object which are relevant to the requested service. Such
properties can be a selection of the supported interfaces, the runtime behavior, and so forth.

Generally speaking, there are service providers and service requesters. The process of
finding a service provider, e. g. the matching of requests with offers is called trading
[ISO93a]. The instance that performs trading is called a trader. A trader can be considered
to be placed between a broker, as implemented by CORBA’s ORB, and a message bus
used for anonymous communication.

Trading is a highly complex process and in larger systems closely related to runtime
management. The trader analyzes the service request and checks if there is an offer
matching the request. This is the case, if the provider can talk the same protocol
(independent from the actual type of the provider) as the request specifies. If there are no
matching offers then the trader could check for offers that meet the request only partially. If
possible, it constructs a “virtual” service provider based on the offers found. This allows,
for example, to transparently install version-to-version converters. Trading can include the
launching of appropriate service providers in the case that there are non at request time.
Trading effectively implements “Program to a self-describing language-, system-, and
compiler-neutral specification” as explained in Section 2.4.

Trading provides slippage-tolerance to the following aspects of object coupling.

• directed object communication
• connection establishment
• connection termination
• data model negotiation (partially)

Examples

Object trading can be used in small monolithic object-oriented systems, but of course is
most useful in distributed object systems. The presented examples meet the requirements of
trading only partially. Trading is still an area of active research.

Late creation as described in [Rie95] is a particular example of restricted trading combined
with object creation. A client requests an object that is of a specific type. Furthermore, the
object has to meet a certain requirement specification. Late creation defines the process of
finding an appropriate sub-class and creating an object of that class. For example, an object
request a Collection object which ensures the insertion sequence of the contained objects.



- 12 -

Depending on the particular selection process, the returned object can be a
SequentialCollection, an OrderedCollection, or something else which meets the
requirement.

Late creation is restricted trading in the sense that it does not support the construction of
newly compound objects and the trading scope is limited to sub-classes of a particular class.

Open Distributed Processing - Reference Model. Trading is of particular interest in large
distributed object systems. Therefore, the ODP-RM [ISO93a, ISO93b] defines a trader,
including its interfaces and functionality as one of its major parts. Currently, there are no
complete implementations available. CORBA is a particular, restricted instance of the ODP-
RM. The trading functionality is partially built into the object request broker. The broker can
find and launch servers which implement a requested interface. A trader definition within
CORBA is currently being defined.

4.4 Dynamic facades

Indirection decouples objects. Objects do not have to know each other, they just have to
know a deputy which either hides the coupling transparently or acts in behave. Gamma et
al. [Gam95] identified various structural design patterns, whose major purpose is to
decouple objects by introducing additional layers of indirection (see Section 2.2). These are
especially Facades, Bridges, and Mediators.

Levels of indirection are such a fundamental design vehicle for flexible coupling that it
must be easy and efficient to use. It should be possible to dynamically introduce levels of
indirection as soon as a more flexible coupling is necessary. For instance, this could be the
case in the context of runtime management. In this section and the following section we
introduce the notions dynamic facade, role object, and core object in order to enable naming
and referencing of particular indirection concepts in use. They are very powerful in
combination with anonymous communication and trading.

A dynamic facade introduces an additional level of indirection and supports efficient
object packaging. It generally resembles a facade introduced by [Gam95], only that it is
more flexible. A facade according to [Gam95] is an object that dynamically encapsulates the
objects of a whole subsystem as well as their relationships. The facade provides a proper
interface for all or a particular subset of services provided by the objects of the subsystem.
These services should only be accessed via the facade object. This makes it easier to evolve
the subsystem without directly affecting its clients.

A dynamic facade can be dynamically created, modified, and deleted. It encapsulates a
subsystem whose essential parts can be modified, exchanged, and restructured at runtime.
Its interface provides methods to add objects to and remove them from the subsystem.
Additionally, each object that is registered with the dynamic facade can promote operations
to it. Promoted operations are part of the facades interface. Calling a promoted method
initiates the forwarding of the call to the original object. Depending on the actual
implementation, promotion can for example be executed by means of shipping code to the
dynamic facade object (see Section 4.5), or the installation of callback functions. In contrast
to ordinary facades, dynamic facades avoid the introduction of new facade classes in the
case that the configurations of the subsystems change. Furthermore, they enable the
encapsulation of previously unknown subsystem configurations.

A dynamic facade is interesting in consideration of the following aspects of object
communication:
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• dispatch strategy
• indirect connection establishment and termination
• object packaging

Examples

Beyond-Sniff [Bis95] distinguishes between two different kinds of dynamic facades:
ServiceApplications and ProjectServiceTrees.

A ServiceApplication can contains any number of Services and provides them with a
thread of control. A Service registers with the ServiceApplication under a certain subject.
The ServiceApplication can then receive requests according to this subject and forwards the
calls to the service. The Services are not only encapsulated by a ServiceApplication but they
are completely folded into it. This shows that in large distributed systems the requirements
of a dynamic facade can change: They do not just serve as proxies for their content. They
provide the “computational container” from them.

A ProjectServiceTree is a dynamic facade for a changing set of services which are related
to a certain project [Bis92, Bis95]. A clients always talks to ProjectServiceTree which
dispatches and maps the calls on the proper services. For more information we refer to
[Bis95].

4.5 Roles- and core objects

Objects usually have multiple clients. The particular context where an object is actually used
can considerably differ from client to client. Nevertheless, an object has to provide a proper
interface to meet all the requirements related to the different contexts. Therefore, the
protocol of an object is a mixture of all the context specific protocols [Ree96].

Accordingly, objects can be designed by preferring object composition instead of
inheritance: An object consists of a core object and various context specific protocol objects.
A core object is designed to provide a number of specific services. It provides a concise and
small interface for these services. The interface is not tailored according to the requirements
of certain contexts of usage.

A protocol object is designed for one distinguished core object and one particular
context. It provides the context specific interface of the core object’s services. We call a
context-specific protocol of the core object its role. A role defines a client's view on the core
object [Ree96]. From a technical point of view, role objects can be considered a special kind
of facade which is specific according to the type of the client. Clients just see the protocol
objects, the core object is not directly accessible.

Roles increase the reusability of core objects. Core objects are defined independently
from role objects. New roles can be easily defined. Without specific technical support, we
are faced with the following problems:

• The introduction of a new role probably extends the possible states of the object. State
relevant instance variables are scattered over role and core objects. Specific properties
such as persistency have to be implemented for the core as well as for all role objects
which carry state information. Therefore, all clients of the same type have to share the
same role object. The role object must exist as long as it is needed by a client.

• The distribution of state information raises future problems which can be described as a
consistency update problem: A client for example invokes the SetName method of an
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object, e. g. it invokes the SetName method of a role object which executes some
proprietary code and finally forwards the call to the core object.

This shows that each role object can define certain proprietary functionality for the SetName
method. Consequently, changing the name via a particular role nevertheless requires the
appropriate execution of the SetName functionality of all possible roles.

Client’s view
Role

Core

Figure 2: Core and role objects

In order to solve these problems we propose the explicit design and implementation of
core and role objects according to the following requirements:

Core objects support state and behavior integration. A core object can be dynamically
extended by new state information, e. g. arbitrary accessible information can be
transparently attached to the core object. Furthermore, each method of the core object can be
extended by new functionality. Extending can be accomplished by code shipping or
callback functions.

State integration avoids the distribution of state information: all state information of an
object is managed by its core object. Behavior integration provides a framework to achieve
consistent updates.

Role objects are quite similar to dynamic facades. They are purely functional, light-
weight objects. They just maintain a reference to their core object. The value of that
reference can be either passed as a parameter at creation time or the role object itself looks it
up as soon as the core object is needed. Role objects provide an interface in order to
integrate their state information and their update functionality with their core object.

Creation and deletion of role objects should be extremely cheap. Due to state integration
and cheap creation, there is no need to share role objects between clients. Core objects
should be implemented as dynamic objects (see Section 4.6).

Role and Core objects are closely related to role-based modeling as described by
Reenskaug [Ree96] as well as subject-oriented programming as introduced by Harrison and
Ossher [Har93]. They primarily address the decoupling of clients and servers by means of
• indirect connection establishment & termination.
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4.6 Dynamic objects

Dynamic facades and core objects have several things in common: Their behavior can be
dynamically changed and the structure of core objects can be dynamically modified. We call
objects with dynamic structure and behavior dynamic objects. How they are implemented
highly depends on the used technology.

Examples for pragmatic approaches are the following: Using interpreted and
dynamically compiled languages, dynamic behavior is for free. Using compiled languages,
this can be accomplished by either exploiting dynamic loading of code or by building a
hybrid system that incorporates both interpreted and compiled languages. An object can be
dynamically changed by attaching code scripts to methods or by substituting built-in
methods by code scripts. The latter raises the need to provide mechanisms to represent the
object’s environment in the runtime environment of the interpreted code. Furthermore, the
dispatch policy has to consider code scripts accordingly.

The dynamic structure is a good application area for SDRMs. For example, a class can
define an instance variable which can store any kind of data that a particular SDRM can
represent. Consequently, objects of this class can carry arbitrary information, which is
selectively accessible due to the SDRM’s reflectivity. Therefore, these objects can be
considered to have an extensible set of instance variables. Core objects (see Section 4.5) are
such objects.

Dynamic objects face us with a similar kind of trade-off as self-describing method calls.
The type of a dynamic object gives only insufficient information about the capabilities of a
particular object. If the type defines a certain method then the dynamic object supports this
method. The programmer has to ensure that a method modified or overwritten by a code
script still embodies the same semantics. A type of a dynamic object just defines the
minimal set of methods and instance variables an object of that type has to have. Since it
can have more instance variables and support more methods, dynamic objects have to
provide an interface to query information about their current structure and abilities.

Examples

The capabilities dynamic objects provide are widely known requirements. Gamma presents
in [Mar97] the Extensible Objects pattern that proposes how to implement them.

Beyond-Sniff [Bis95] services are coarse-grained dynamic objects. A service contains an
Any as an instance variable by which it can be structurally changed. Furthermore, each
service supports so-called RequestHandlers. They can be added, changed, and removed. A
RequestHandler contains a Python script and basically represents an implementation of a
method of the service. It is called whenever the appropriate method is invoked.

Further approaches to dynamic objects are reflective object architectures and meta-object
protocols (MOP) as implemented in CLOS [Kic91] or GBO [Bis96a, Bis96b]. Context
relations as defined by Seiter et al. [Sei96] provide an interesting theoretical background for
dynamic objects.

4.7 Extended semantic data representation mechanisms

Almost each one of the introduced mechanisms profits from SDRMs, although they are
rather simple. Unfortunately, SDRMs are not well suited for the handling of large amounts
of data which would make them even more useful.
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Dealing with larger amounts of data requires some features from a SDRM, which it
usually does not provide:

• scaleable structuring constructs, and
• declarative access to data items.

A SDRM providing these features is called Extended SDRM (ESDRM) [Mät96].

Examples

Anys (already discussed in Section 4.1) are an ESDRM. Beside a dynamically extensible
set of data types and their externalization, Anys comprise the structuring concept
“AnySoup”. An AnySoup can contain an arbitrary number of AnyFrames. An AnyFrame
is basically a dictionary that is structured according to a defined schema. Schema definitions
are unique within an AnySoup. Therefore, AnySoups serve as name spaces. Furthermore,
each AnySoup comprises a query evaluator. A client can send OQL queries [Cat94] to an
AnySoup and get all matching AnyFrames as results. A detailed discussion of Anys can be
found in [Mät96].

5 Related Work

Evolution compatible system design has been an area of intensive research for a few years.
We presented various examples in the Example sections of Section 4. As fare as we know,
there are no systems which explicitly focus on a shearing layer architecture. In consideration
of flexible object coupling we consider adaptive programming [Lie96], subject-oriented
programming [Har93], and aspect-oriented programming [Kic96] very interesting.
Furthermore, the ongoing efforts in the ODP trading community are an important source of
influence. For detailed information about these topics we refer to the literature.

The introduced slippage mechanisms heavily depend on the underlying implementation
technology. The most important aspect of an implementation technology are its available
opportunities to influence the major mechanisms of object coupling. Dynamic, reflective
programming languages and various object models such as CORBA provide various useful
features to do so. These features are useful to implement the slippage mechanisms but they
are not a solution by themselves.

In the area of object models we consider IBM’s System Object Model (SOM) [Lau94]
and GBO’s System Object Architecture (SOA) especially interesting. These are models
which provide various technical features to deal with evolution. SOM provides the
following features, which make it a good choice for implementing slippage-friendly
systems for non-distributed systems:

• Binary-to-Binary Compatibility avoids the need for recompiling clients of objects of
changed classes as long as the change does not require modified program code.
Changes belonging to this category are: methods can be added, methods which are not
used by the client can be changed, the list of instance variables can be extended.

• Each class is represented by a class object. A class object can be used to query
information about the represented class at runtime: protocol of the class, relationships
to other classes, version number, and so forth. Furthermore class objects can be
extended by dynamic methods, these are methods which are attached to a class at
runtime. SOM supports three different styles of method resolution: offset, name-
lookup, and dispatch function resolution. Class objects are directly involved in name-
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lookup and dispatch function resolution which makes method dispatching system-
specifically adaptable.

• Dynamic Link Libraries (DLL) are explicitly supported by SOM.

• Supports the Interface Definition Language (IDL).

GBO’s SOA tackles evolution by being reflective. As in SOM, each type is explicitly
modeled by a type object. These type objects are an integrated part of the SOA runtime
system, for example they decide about method dispatching, object migration strategies, and
so forth. By means of the SOA transaction model, types, type interfaces, and type
implementation objects can be smoothly evolved at system’s runtime. [Bis96a, Bis96b]
explain SOA in detail.

6 Summary

The Slippage Problem is a major part of the system evolution problem. It can be tackled by
providing mechanisms, which turn undirected evolution into directed evolution on the meta-
level. An appropriate means is Design for Slippage. It generally defines a shearing layer
architecture. Shearing implies that the various layers are flexibly coupled. Accordingly, we
propose that a system should have a distinguished set of concepts and abstractions which
forms its design center. The objects of the center have only a minimal amount of
relationships to the outside. These relationships are represented by highly flexible coupling
mechanisms. In order to support the further development of such mechanisms we
presented the various aspects of object coupling which have to be addressed by those
mechanisms.

Technical prerequisites for flexible coupling mechanisms are, for example, (extended)
semantic data representation mechanisms and dynamic objects. The techniques are self-
describing method calls, anonymous communication, connection establishment via traders,
decoupling via dynamic facades, and the clear distinction between requirements caused by
different contexts by means of role and core objects. These mechanisms rely on the notion
of object-orientation and can be used in any kind of object system. However, the concrete
examples of these mechanisms make clear that a specific implementation has to be
individually tailored to the requirements of its particular object system.

The implementation heavily depends on the underlying technology. Although the
requirements differ between various architectures, it is clear that the more flexibility the
underlying implementation technology provides, the less effort has to be spent to
implement the mentioned mechanisms. All these principles basically follow the same
pattern: Object coupling previously established at compile- or link-time is shifted to
runtime. Necessary compatibility can no longer be checked at compile-time but is now
dynamically checked. Runtime system functionality like method dispatching can be
explicitly changed. Therefore, the usage of these flexible coupling mechanisms is always a
trade-off between the potential maximum of statically checked code and the necessary
flexibility to make system slippage-tolerant and therefore, reduce maintenance efforts.
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