
1

Abstract

1 Introduction

Appeared in: IEEE Data Engineering Bulletin, Vol. 19, No. 1, pp. 14-23, 1996

Exploiting the Functionality of Object-Oriented Database

Management Systems for Information Retrieval 1

Gabriele Sonnenberger

Ubilab, Union Bank of Switzerland

Bahnhofstrasse 45, 8021 Zurich, Switzerland

sonnenberger@ubilab.ubs.ch

In this paper, we present the approach of FIRE to utilizing an object-oriented Database Manage-

ment System (DBMS) for Information Retrieval (IR) purposes. First, a comprehensive overview

of previous attempts to use DBMSs for implementing IR systems is given. Next, di�erences be-

tween DBMSs and IR systems, with regard to indexing and retrieval, are discussed. In addition,

some shortcomings of DBMSs with regard to supporting IR systems are pointed out. Then, an

overview of FIRE, which is designed as a reusable IR framework, is given and its approach

presented in more detail. Special attention is given to the design and implementation of an

IR-index and how retrieval e�ciency can be improved by using the optimization facilities of the

underlying object-oriented DBMS.

and

Due to recent advances in Information Technology and Telecommunications, more and more informa-

tion is produced and distributed by electronic means. Instead of plain ASCII texts, information is

increasingly encoded in di�erent forms, e.g., as graphs, tables or formatted texts. These developments

impose additional requirements on the management and retrieval of information. Whereas in the past

the focus in Information Retrieval (IR) was on text, which was mostly considered to be unstructured,

today's IR systems have to face information which usually consists of structured and unstructured

parts and which may be composed of di�erent media.

We observe further changes in the
ow and distribution of information. In the past, the user of an

IR system was typically a passive consumer of information gathered at the special sites of professional

information providers; while nowadays a user is often both an information consumer an information

provider, e.g., in a cooperation's document management system. Hence, data management issues like

persistent storage of data, concurrency control, and recovery after failures are gaining importance, and

IR systems must cope with these issues.

Developing techniques for the indexing and retrieval of heterogeneous information units is a de-

manding topic genuine to the IR domain. In contrast to this, data management issues have already

been investigated extensively by the Database (DB) community, which has also developed theories

and techniques applied in productive systems. Rather than `reinventing the wheel', it is natural for

developers of IR systems to try to pro�t from the results of the DB community by basing IR systems

on Database Management Systems.

1

2.1 Relational DBMSs

best match

ranked list

2 IR Systems Based on DBMSs

In this paper, we report on our experience utilizing a Database Management System (DBMS) for IR

purposes. Section 2 reviews previous attempts to use DBMSs for implementing IR systems. In Section

3, we discuss di�erences between IR systems and DBMSs with regard to indexing and retrieval, and

point out some shortcomings of DBMSs with regard to supporting IR systems. Finally in Section 4,

we sketch our IR framework, which we call FIRE, and present our approach for using the functionality

of an object-oriented DBMS in an IR system. The paper concludes with some remarks on future work.

A �rst approach to use a DBMS for IR purposes is to consider IR as a DB application. This has

been proposed, for instance, by Macleod & Crawford [Mac83], Blair [Bla88], and Smeaton [Sme90].

Common to these proposals is that the IR systems are based on a relational DBMS, and SQL is used

as retrieval language. These IR systems do not store full documents, but bibliographic references to

documents; these usually provide the title of the document represented, the names of the authors, an

abstract, some content descriptors, and the details about the date and location of the publication.

This approach of making use of a DBMS has received major criticisms. One factor that has

been criticized especially, e.g., by Schek & Pistor [Sch82], is that the relational DB model represents

information in a rather unnatural way by a set of tables (relations). Further, SQL queries tend to be

rather complex and di�cult to understand; see for instance the examples given in [Mac91]. In addition,

retrieval may be quite computationally expensive, especially when information from di�erent tables has

to be combined by a `join' operation.

A severe shortcoming of this approach is the restriction to reference retrieval. This restriction is not

so much voluntary as a matter of the underlying relational DB model. The relational model requires

the �elds of a record to be of a �xed length, thus making it di�cult for a relational DBMS application

to manage information units such as ordinary texts, which usually vary in length. (Of course, there

are work-arounds like follow-up records, but such work-arounds make the modeling of information

even more awkward.) A second severe shortcoming is that SQL in its basic form is restricted to exact

matching. An exact match is appropriate for many DB applications, especially when information is

structured to a high degree and the vocabulary used is rather �xed. In most IR applications however,

information units like texts are signi�cantly less structured and the vocabulary used is usually unre-

stricted. Correspondingly, users of IR systems �nd it far more di�cult or even impossible to issue a

query which successfully delivers all information relevant to a given information need, but excludes ir-

relevant material. Therefore, more advanced approaches to IR abandoned the exact matching paradigm

and �nd instead the pieces of information which the user's query by applying weighting

schemata. The user receives as result a which is sorted by the assumed probability that a

piece of information is suited to answer the user's information need.

Several attempts have been made to provide better DB support for the development of IR systems

by extending the relational model, or by adding new features to SQL. To provide more natural external

views of information, Schek & Pistor [Sch82] have proposed a generalization of the relational model

which allows nested relations. Lynch & Stonebraker [Lyn88] have introduced abstract data types,

which make the formulation of content-based search conditions more convenient, although retrieval is

still based on the exact matching paradigm. An extension of SQL allowing a `similar-to' comparison

operator has been proposed by Motro [Mot88]. Furthermore, various approaches have been developed

for dealing with uncertain information, for instance by Garcia-Molina & Porter [Gar90].

2

2.2 Coupling an IR System with a DBMS

2.3 Object-oriented DBMSs

A di�erent approach to making use of a DBMS for IR purposes is to couple an IR system with a

DBMS. Croft et al. [Cro92] attempted a loose coupling between the IR system INQUERY and IRIS, a

prototype version of an object-oriented DBMS. They chose an object-oriented DBMS since the object-

oriented model allows one, in contrast to the relational model, to store complex textual information in

a quite natural way. The IR and the DB system are coupled externally by a control module. There are

links from the information units stored by INQUERY to the corresponding textual objects of the IRIS

database. The integrated system provides the functionality of both underlying systems. Thus, the user

may issue content-based queries as well as DB queries. However, a severe problem of this coupling

approach is that information is stored twice, by the IR system as well as by the DBMS. This may

cause consistency problems when information is modi�ed. Furthermore, there is no full integration of

content-based queries and DB queries.

Gu et al. [Gu93] have chosen an alternative way to couple an IR system with a DBMS. They have

embedded the functionality of the IR system INQUERY into the relational DBMS Sybase. Furthermore,

they have extended SQL by a function which takes an INQUERY query as input and allows one to

choose the INQUERY database to be consulted for evaluating the query. This system avoids storing

information twice: textual information is stored and managed by the IR system and other kinds of

information by the DBMS, which also provides pointers to the textual information stored and managed

by the IR system. The main drawback is that two di�erent approaches for managing and retrieving

information are used, which makes the management of information more di�cult. Further, the best

match retrieval paradigm is restricted to textual information, whereas an application of this retrieval

paradigm to other kinds of information would be highly desirable, as for instance pointed out by Fuhr

[Fuh92].

Bearing in mind the shortcomings of the relational model, it has been proposed to use other models,

more appropriate than the relational DB model, as a basis for developing IR systems; e.g., an array

model [Mac87] or an object-oriented DB model [Har92p]. The object-oriented DB model is especially

appealing, since object-oriented technology is maturing and the �rst commercial systems are already

available.

The object-oriented approach has also been adopted for developing our IR framework FIRE. The

framework is implemented using ObjectStore [Lam91], a commercially available object-oriented DBMS.

In ObjectStore, persistence is not part of the de�nition of an object, but a matter of allocation at the

time of object creation (`persistency by allocation'). Thus, objects of the same type can be allocated

persistently as well as transiently. Furthermore, it makes essentially no di�erence whether we deal with

a transient or persistent object. These features of ObjectStore enable us to design and implement an

IR system in a problem-adequate way, mostly neglecting data storage details. Thus the developer of

an IR system can rely on the DBMS's means for persistent storage, concurrency control, recovery after

failure, etc., without having to accept severe restrictions, as experienced from relational DBMSs.

Object-oriented DBMSs provide a useful basis for the development of IR systems, yet could support

IR systems even further with regard to performance issues. ObjectStore, for instance, allows one

to improve retrieval e�ciency by building specialized indexes and by optimizing queries. However,

indexing and retrieval in an IR system di�er in certain aspects from indexing and retrieval in a DBMS,

as described in the following section. Consequently these facilities cannot be used directly for IR

purposes. Modifying the core functionality of a DBMS for exploiting these facilities is not in the range

of a regular user of a DBMS, thus we cannot expect a solution from the DB side | at least not in the

3

�

�

3 Some Di�erences between IR Systems and DBMSs

3.1 Index

3.2 Retrieval

3.3 Indexing and Retrieval Functionality

short term. Yet, the optimization facilities of object-oriented DBMSs can be utilized in IR systems by

a proper design on the IR side, as is shown in Section 4.

The term `index' is used both by the DB community and by the IR community, however with di�erent

meanings. While the function of a DB-index is to improve performance, an IR-index typically also

provides additional data. In detail, we can observe the following di�erences:

A typical IR-index is an inverted �le with index entries, each consisting of a key representing a

feature derived from a source and a set of postings. A posting may include information about the

frequency of the given feature within the source, or may specify its position within the document

in more detail. A DB-index, however, only maintains the paths to the objects where an attribute

has a certain value.

In an IR application, information about the characteristics of the collection represented by an

index is required when computing the relevance of an information unit to a user's query. An

example of such information is the maximum frequency of a term in a collection of texts or the

mean value and standard deviation of a set of numbers. Since a DB-index serves only to optimize

access, no such collection information is needed.

Due to the di�erences, typical IR-indexes are not supported by DBMSs. Optimized access to

information | as is done by a DB-index | is, however, crucial for implementing e�cient IR systems.

Thus, how we can use DB-indexes to build IR-indexes is an open research problem.

A typical DBMS provides a retrieval interface which allows one to check whether two values are equal,

and to determine whether a value is smaller or greater than another value. Usually such queries can

be optimized, e.g., by instructing the DBMS to create and maintain appropriate indexes.

Advanced IR systems are supposed to support approximate (`best') matching. Unfortunately, ap-

proximate matching is not supported by DBMSs. This is a severe shortcoming, since approximate

matching is far more time-consuming than exact matching, and therefore demands optimization facil-

ities. To deal with the additional complexity, we urgently need specially tuned matching methods and

techniques to avoid a linear search through an index. These methods and techniques should ideally

work hand in hand with available DBMS techniques.

In the case of a conventional IR application, i.e. one which is not based on a DBMS, the application

developer has to provide all the indexing and retrieval functionality needed. Developing an IR system

on top of a DBMS might save design and implementation e�ort, since DBMSs already provide indexing

and retrieval functionality. The task of the application developer would then be to choose appropriate

functionalities and to instruct the DBMS correspondingly. In order to index a set of objects for instance,

the application developer would have to state which object attributes are to be indexed in which way,

and to select the index structures best suited for the attribute values. Indexes would then be set up

automatically under control of the DMBS. Unfortunately, the options provided by DBMSs do not cover

4

InformationObject

InfoObjectElement

IOE-List

IOE-Set

IOE-PersonName IOE-Date

IOE-IntegerIOE-String . . .

ReprInfoUnit

. . .

. . .

. . . Index-IDF Index-2Poisson

Index

F

I Re

Figure 1:

4 The Approach of FIRE

4.1 An Overview of FIRE

ReprInfoUnit

ReprInfoUnit

ReprInfoUnit

ReprInfoUnit

Title Authors TextBody PublicationDate

InfoObjectElement

InfoObjectElement

the full range needed for IR applications and do not allow one, for instance, to index a text directly in

a traditional IR manner using the indexing mechanisms of a DBMS. Thus, we need to investigate how

we can use indexing and retrieval functionalities of object-oriented DBMSs for IR purposes.

FIRE is designed to facilitate the development of IR applications and to support the experimental

evaluation of indexing and retrieval techniques. In addition, the framework is supposed to provide

basic functionalities for several media and should end up as a
exible and extensible tool that can

be used for developing a wide range of IR applications. FIRE is an acronym for ` ramework for

nformation trieval Applications'. It is developed in cooperation with the IR group at the Robert

Gordon University, U.K.

The design and implementation of FIRE are based on an object-oriented approach. The object

model of FIRE de�nes the basic IR concepts and supplies functionalities that support the realization

of an IR application. This section gives a short overview of FIRE focusing on the most essential classes

of FIRE's object model. A more comprehensive description of FIRE's design and object model is given

in [Son95].

FIRE represents documents by a set of features (or attributes). Note that the term document is

used here in a broad sense: documents may consist of structured and unstructured parts and may be

composed of di�erent media. The class (see Figure 1) models documents in a generic

way. It de�nes methods which provide information about the modeling of a document representation as

well as methods for accessing the features of a document representation. In addition, and

its subclasses are responsible for organizing the indexing and retrieval of documents of the respective

type.

Overview of the most important classes of FIRE's object model

Concrete subclasses of de�ne how documents of a certain type, e.g., books, tables, etc.,

are represented in an application. When dealing with text for instance, a new subclass of

may be introduced, consisting of features like , , , and . The

modeling of concrete types of documents is not part of FIRE's object model as this is an application-

speci�c task. Nevertheless, the framework supports the application developer in this task. The class

and its subclasses provide a set of data types like string, integer, person name,

date, set, and list (c.f. Figure 1), which are intended to be used for the application-speci�c modeling

of documents. If needed, the application developer may extend this set of data types by adding new

subclasses. helps to reduce the e�ort for developing an IR application by providing

an associated interface for indexing an information unit, determining the similarity of two units, etc.

Further, this branch of the class hierarchy supports a uniform representation of document components,

5

Index DB-Collection

IndexingFeature

Figure 2:

4.2 Design of an IR-Index

Index

Index

Index Index-IDF Index-2Poisson

Index

Index

Index IndexingFeature

DB-Collection

IndexingFeature

IndexingFeature

IndexingFeature

IndexingFeature Index

IndexingFeature IndexingFeature

Index

Index

Index

addIFs Index

IndexingFeature Index

Index

update

Index

Index getIFsOf IndexingFeature

retractIFsOf IndexingFeature

clear IndexingFeature

Index retrieve

ReprInfoUnit

e.g., the author of a book is speci�ed in the same way as the author of a chart table.

The class is the implementation of a typical IR-index, which not only manages a set of

indexing features derived from a collection of documents but also provides information for calculating

the probability of relevance of information units to the user's query. The class is a generic class,

which solves general tasks but does not provide speci�c IR functionality. The latter is supplied by

concrete subclasses of like and , which implement particular weighting

schemata (see [Har92m] for an overview of weighting schemata).

In the following two sections, we discuss the design and implementation of an IR-index in FIRE

more comprehensively. First, we present the design of the class with focus on IR related issues.

Then, we discuss some details of which support an e�cient evaluation of queries and enable us

to exploit the optimization facilities of the underlying DBMS.

An basically consists of a set of s (see Figure 2). In addition, it may be associated

with zero or more objects of the type , whose purpose is explained in the next section. An

consists of a feature, e.g., a normalized word from a text, and a source speci�cation.

The latter is essentially a reference to the document from which the feature has been derived. In

addition, an may specify a position within the source. Positional information is needed

for indicating to the user why a particular information unit has been retrieved, which is done by

`highlighting' the relevant pieces of the unit. Furthermore, weighting schemata may use positional

information, e.g., it may be assumed that words occurring in a heading are more important than

words in regular paragraphs. Finally, an is associated with the indexing method

that has been used for deriving the feature. Information units may be indexed in many di�erent

ways, and in many cases more than one method can be applied for indexing a particular unit, e.g.,

weak or strong stemming when indexing textual units. For consistency reasons, it is important that

all s of an have been derived by the same method. Hence, FIRE associates

s with the indexing method applied, and checks whether the to be

added to an is compatible with the ones previously added.

Structure of the class

The class de�nes a set of operations and methods (see Figure 3), which provide a uniform

interface independent of any particular retrieval model. The method of incorporates a

set of s into an . The adding of features does not cause any updating activities

like sorting the or re-calculating indexing weights. Updates have to be invoked explicitly by

an message. We chose to separate the processes in order to avoid unnecessary computations,

for instance, sorting an again and again when indexing a whole collection of documents. The

class also provides a method, called , for determining the s which have

been derived from a particular source. By the method , the s referring to

a given set of sources can be retracted, whereas the method removes all s from

an . Finally, the method serves for retrieving information by evaluating single query

conditions. The results of the evaluation are passed to the query document, which is a

object. The query document invokes appropriate methods for combining the results and for computing

6

Index

addIFs(features: IndexingFeatures): Boolean
update(): Boolean
getIFsOf(source: IO-Address): IndexingFeatures
retractIFsOf(sources: IO-Addresses): Boolean
clear(): Boolean
retrieve(condition: QueryCondition): BasicRetrievalResults
supportMatchers(names: Strings): Boolean
getSupportedMatchers(): Strings

Index-IDF

getNumberOfSources(): Integer
getMaxFreqOfAnyIndexingFeature(): Integer
getMaxFreqOfIndexingFeature(f: IndexingFeature): Integer
getFreqOfIndexingFeature(f: IndexingFeature, s: IO-Address): Integer
getIndexingWeightOfIndexingFeature(f: IndexingFeature, s: IO-Address): Real

Figure 3:

Figure 4:

4.3 Improving Retrieval E�ciency

Index

Index

supportMatchers

Index

IndexingFeature

Index

Index

Index

Index

Index

Index DB-Collection

DB-Collection

DB-Collection IndexEntry IndexEntry

IndexingFeature

Index IndexEntry

IndexEntry IndexingFeature

DB-Collection Index

DB-Collection IndexEntry IndexingFeature

the scores (`Retrieval Status Values', RSVs) indicating the estimated relevance of an information unit

to the user's query.

Operations and methods of

FIRE supports an approximate matching on di�erent data types. It allows one, for instance, to

retrieve documents which cover a particular topic with a high probability and to retrieve documents

which have a similar author name or a similar publication date. As discussed before, an approximate

matching may be quite time consuming. In order to compensate computing e�orts, an object

may be instructed to support particular matching methods. This can be done by an authorized user

at run-time via the method . Also, previous instructions may be overwritten by new

ones. Note that an always allows one to use any matching method applicable to the given type

of s, but performs supported methods more e�ciently. The details of the optimization

of the matching process are fully encapsulated by the class . This is advantageous as it avoids

bothering the user with optimization details.

The subclasses of implement particular weighting schemata. They de�ne additional methods

which calculate the information required by the respective weighting schema. Figure 4 shows an

example subclass of which implements a version of the `Inverse Document Frequency' (IDF)

weighting schema.

A concrete subclass of

The subclasses of are not specialized to a particular type of indexing features. Hence, they

can be used in di�erent contexts and the application developer needs to de�ne a new subclass only if

an additional weighting schema is to be supported.

An may be associated with zero or more objects of the class (see Figure 2). A

serves to improve retrieval e�ciency. It exploits the optimization facilities of the DBMS

and may support approximate matching methods.

An object of the class consists of a collection of s. An is

composed of a key, which may be of any type, and a set of pointers to the s of an

which yield the same key. (Thus, s have essentially the same structure as entries of

an inverted �le.) The key of an is derived from the corresponding , and

may have the same value as the feature or may be assigned some code for optimizing access. The

interface of , which is depicted in Figure 5, is similar to the interface of . However,

is internally concerned with s rather than s. The derivation

7

DB-Collection

addIFs(features: IndexingFeatures): Boolean
update(): Boolean
retractIFs(features: IndexingFeatures): Boolean
clear(): Boolean
xMatch(feature: IndexingFeature): IndexingFeatures
setMatcher(name: String): Boolean
getMatcher(): String
setOptionsDB-Index(options: String): Boolean
getOptionsDB-Index(): String

Figure 5:

IndexEntry IndexingFeature DB-Collection

DB-Collection

DB-Collection

IndexEntry

IndexEntry

DB-Collection

restricted

IndexingFeature

DB-Collection IndexEntry IndexingFeature

IndexingFeature Index

DB-Collection

DB-Collection

Index

IndexingFeature

IndexingFeature

Matcher

key

IndexingFeature InfoObjectElement OptionsDB-Collection

of s from s is invoked by .

Interface of

A utilizes the query optimization facilities of the underlying DBMS by instructing

the DBMS to create an appropriate DB-index for the given collection of s. Since the DBMS

does not index document representations but collections of s, we can apply IR indexing

techniques without being restricted in any way by the DBMS. Nevertheless, we can take advantage

of the DBMS's facilities for optimizing the evaluation of queries. As a further advantage, FIRE does

not need to provide any specialized index structures (B-trees, hash tables, etc.) as well as query

optimization strategies, but can rely on ObjectStore's means.

In addition, serves to optimize approximate matching. When we try to �nd the

objects of a collection which are similar to a given object, we have to consider all objects. This

is in contrast to an exact matching where search can be restricted in most cases, e.g., by a binary

search in an ordered index. To reduce complexity, FIRE allows one to perform the approximate

matching in a form, which is a combination of an exact and an approximate matching. In

this matching mode, a key is generated in a �rst step for the given with the query

condition. Such a key may be for instance a phonetic code for a person name. Then the corresponding

is consulted and its s looked-up to determine the s for which

the same key has been generated. Finally, a full approximate matching is performed with the selected

s. Note, an may support more then one approximate matching method at the

same time by creating di�erent s. This is useful, since di�erent retrieval situations may

require di�erent matching methods. In the case no appropriate exists for the matching

method to be performed, the does the look-up itself, of course in a less e�cient way, by going

through the associated set of s.

The derivation of keys from s is a matter for the matching algorithms, since they

know best how to build appropriate keys. Also, the matching algorithms determine which kind of

DB-index is most appropriate for the resulting keys. In FIRE, matching algorithms are represented

by specialized classes rather than by methods of other classes. This design decision allows the user to

browse through the class hierarchy in order to see which matching algorithms are available and how

they are to be used; see [Son96] for further details. The classes implementing particular matching

algorithms are subclasses of an abstract class called , which is depicted in Figure 6. The

important features of this class with regard to the current topic are the method for deriving keys

from s (or s) and the attribute for specifying

the DB-index options to be applied for supporting a particular matcher.

8

Matcher

TypeInfoObjectElement: String
TypeDB-Collection: String
OptionsDB-Collection: String

key(o: InfoObjectElement): Object
key(o: IndexingFeature): Object
match(o1: InfoObjectElement, o2: InfoObjectElement): Real
match(o1: IndexingFeature, o2: IndexingFeature): Real
keyMatch(o1: InfoObjectElement, key1: Object, o2: InfoObjectElement): Real
keyMatch(o1: IndexingFeature, key1: Object, o2: IndexingFeature): Real
restrictedKeyMatch(o1: IndexingFeature, key1: Object, o2: IndexingFeature, r: IO-Addresses): Real

�

�

�

Figure 6:

Conclusions

Acknowledgements

References

Matcher

Matcher

Index Matcher

Index

Matcher

Information

Processing & Management

Proc. of the 15th Annual

Int. ACM SIGIR Conference on R & D in Information Retrieval (SIGIR-92)

Class

The design of the class and its subclasses eases the optimization of approximate matching

methods. It is fully su�cient to instruct an to support certain (s). Knowing the names

of the matching algorithms to be supported, the itself can gather the necessary details by asking

the proper (s).

In this paper, we have reviewed previous attempts to use DBMSs for implementing IR systems and

pointed out some shortcomings of DBMSs with regard to the support of IR systems. Furthermore,

we have presented FIRE's approach for using the functionality of an object-oriented DBMS in an IR

system. FIRE allows one especially

to represent complex heterogeneous information in a natural way,

to utilize the query optimization facilities of the underlying DBMS for IR purposes, and

to reduce the complexity of an approximate matching.

In the near future, we will perform experiments to quantify the e�ect of the DBMS's optimization

facilities in IR applications and to test the performance of the restricted approximate matching.

The author would like to thank Tore Bratvold, Ubilab, and Andreas Geppert from the University Zurich

for many fruitful discussions on the design of FIRE and the integration of DBMSs and IR systems.

Thanks are also due to Manuel Bleichenbacher, Ubilab, for his work on ETOS, which is the software

development platform used for implementing FIRE, and his technical assistance with ETOS.

[Bla88] D.C. Blair: An Extended Relational Document Retrieval Model. In:

, Vol. 24 (3), pp. 349-371, 1988

[Cro92] W.B. Croft, L.A. Smith, and H.R. Turtle: A Loosely-Coupled Integration of a Text

Retrieval System and an Object-Oriented Database System. In:

, pp. 223-232,

1992

9

Proc. of the 15th Annual

Int. ACM SIGIR Conference on R & D in Information Retrieval (SIGIR-92)

Proc. of EDBT

Information Retrieval `93, Von der Modellierung zur Anwendung

Information

Retrieval: Data Structures & Algorithms

The Computer Journal

International Conference on Very Large Data

Bases

Information Technology: Research and Development

Journal of the American Society for Information Science

Journal of the American

Society for Information Science

ACM Transactions of O�ce Information Systems

Proc. of the 8th International Conference on Very Large

Data Bases

Program

Proc. of the 18th

Annual Int. ACM SIGIR Conference on R & D in Information Retrieval (SIGIR `95)

[Fuh92] N. Fuhr: Integration of Probabilistic Fact and Text Retrieval. In:

, pp. 211-222,

1992

[Gar90] M. Garcia-Molina and D. Porter: Supporting Probabilistic Data in a Relational System. In:

, pp. 60-74, 1990

[Gu93] J. Gu, U. Thiel, and J. Zhao: E�cient Retrieval of Complex Objects: Query Processing in

a Hybrid DB and IR System. In: G. Knorz, J. Krause and C. Womser-Hacker (eds.):

, pp. 67-81,

Konstanz/Germany: UVK, 1993

[Har92m] D. Harman: Ranking Algorithms. In: W.B. Frakes and R. Baeza-Yates (eds.):

, Englewood Cli�s/N.J.: Prentice Hall, 1992

[Har92p] D.J. Harper and A.D.M. Walker: ECLAIR: An Extensible Class Library for Information

Retrieval. In: , Vol. 35 (3), pp. 256-267, 1992

[Lam91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb: The ObjectStore Database System. In:

Communications of the ACM, Vol. 34 (10), pp. 50-63, 1991

[Lyn88] C.A. Lynch and M. Stonebraker: Extended User-De�ned Indexing with Applications to

Textual Databases. In: Proc. of the 14th

, pp. 306-317, 1988

[Mac83] I.A. Macleod and R.G. Crawford: Document Retrieval as a Database Application. In:

, Vol. 2, pp. 43-60, 1983

[Mac87] I.A. Macleod and A.R. Reuber: The Array Model: A Conceptual Modeling Approach to

Document Retrieval. In: , Vol. 38

(3), pp. 162-170, 1987

[Mac91] I.A. Macleod: Text Retrieval and the Relational Model. In:

, Vol. 42 (3), pp. 155-165, 1991

[Mot88] A. Motro: VAGUE: A User Interface to Relational Databases that Permits Vague Queries.

In: , Vol. 6 (3), pp. 187-214, 1988

[Sch82] H.J. Schek and P. Pistor: Data Structures for an Integrated Database Management and

Information Retrieval System. In:

, pp. 197-207, 1982

[Sme90] A. Smeaton: Retriev: An Information Retrieval System Implemented on Top of a

Relational Database. In: , Vol. 24 (1), pp. 21-32, 1990

[Son95] G. Sonnenberger and H.-P. Frei: Design of a Reusable IR Framework. In:

, pp.

49-57, 1995

[Son96] G. Sonnenberger, T.A. Bratvold, and H.-P. Frei: Use and Reuse of Indexing and Retrieval

Functionality in a Multimedia IR Framework. (Paper presented at the �nal MIRO

Workshop in Glasgow, Sept. 1995; publication forthcoming)

10

