

In: Proc. of the 18th Annual Int. ACM SIGIR Conference on R & D in Information Retrieval (SIGIR ‘95), p. 49-57

Design of a Reusable IR Framework

Gabriele Sonnenberger and Hans-Peter Frei

UBILAB, Union Bank of Switzerland
P.O. Box, 8033 Zurich, Switzerland
{sonnenberger,frei}@ubilab.ubs.ch

Abstract

In this paper, we describe the design of a reusable IR
framework, called FIRE, that is being implemented to facil-
itate the development of IR systems. In addition, FIRE is
designed to support the experimental evaluation of both
indexing and retrieval techniques. First, we discuss the
development of reusable software in the IR domain and
derive essential criteria for the design of an IR framework.
Next, we sketch the object model developed for FIRE. We
present the basic concepts and their modeling and show
how the components interact when performing indexing and
retrieval tasks.

1. Introduction

Everyday information is heterogenous and usually con-
sists of structured and unstructured parts. In addition, it may
be composed of different media. Furthermore, information
is invariably embedded in a context and is associated with
additional information. In the past the focus in information
retrieval (IR) has been on text, which was mostly consid-
ered to be unstructured. Recently, different methods have
been developed to improve the storage and retrieval of real
world information. Most notable are approaches for
• integrating fact and text retrieval in order to deal more

appropriately with information that is structured to var-
ious degrees (e.g. Fuhr [1992]),

• indexing and retrieving non-textual media such as
images or speech (Glavitsch & Schäuble [1992]),

• connecting information units by links and providing
both a more intuitive access to information (e.g. Halasz
& Schwartz [1994]) and retrieval techniques that
exploit these links (e.g. Frei & Stieger [1995]).

Broadening the scope of IR makes the development of
systems more complicated and laborious. Furthermore,
most of these advanced approaches are at an early stage of
development. Thus, there is special need for evaluating and
comparing the various approaches by experimental applica-
tions. The goal of the work described in this paper is to ease
the development of IR systems and to support the experi-
mental evaluation of indexing and retrieval techniques by

providing reusable software in the form of an IR frame-
work.

The paper is organized as follows: Section 2 gives an
overview of the different approaches for developing reusa-
ble software for the IR domain and sketches previous work.
Subsequently, we identify essential criteria for the design of
a framework that is tailored to the IR domain. Section 4, the
main part of this paper, describes the object model that we
have developed for FIRE

1

, as we call our IR framework. We
present the basic concepts and their modeling and then
show in section 5 how the components interact when per-
forming indexing and retrieval tasks. The paper concludes
with some implementation details and remarks on future
work.

2. Reusable software in the IR domain

Generally, software reuse is discussed within the
object-oriented software design and programming para-
digm. Krueger [1992] gives a comprehensive survey of the
software reuse literature. Two approaches which seem most
promising with regard to application to the IR domain are
the definition of a

class library

 and the development of a

framework

. In the first case, the goal is to define a relatively
complete and practical library of methods. In certain areas
such as numerical or statistical analysis, this has been done
quite successfully. Applying this approach to IR, we would
have to define methods for stemming terms, indexing natu-
ral language texts, determining the similarity of items
(e.g. strings, numbers), etc. A framework is a program skel-
eton that defines the basic concepts of an application
domain and how its components are interrelated. In the IR
domain, we would need to model concepts like text, index
and query, to define appropriate methods, and to make the
components work together. Only if such a framework pro-
vides suitable generalizations and abstractions, does it allow
to realize various applications and different IR techniques.

In the IR community, the development of reusable soft-
ware has so far not been a special concern. Exceptions are
some full-fledged systems like SMART (Salton [1971]) and
INQUERY (Callan et al. [1992]) that have been reused by
others than the developers. LyberWorld (Hemmje et

1. FIRE is an acronym for “Framework for Information
Retrieval Applications”. The FIRE project is developed in cooper-
ation with the IR group at the Robert Gordon University, Aber-
deen.

This document was created with FrameMaker 4.0.2

2

al. [1994]) for instance utilized INQUERY as retrieval
engine and built a prototype for a novel user interface on top
of it. Full-fledged systems like INQUERY are usually not
trimmed for reuse, thus their adaptability to the specific
needs of an application is restricted. To our knowledge, the
only work aiming explicitly at reusable IR software was
undertaken by Harper & Walker [1992], who developed
ECLAIR, an extensible object-oriented class library.
ECLAIR is specialized on automatic indexing of texts and a
best-match retrieval approach. However, the goal of the
class library is less to support the development of IR appli-
cations than to deliver IR functionality to the developers of
general-purpose application systems.

IR methods are not as established as methods for
numerical or statistical problems and there is less agreement
as to which data types the methods are to be based on. Let
us consider for instance automatic indexing. As long as we
merely derive single terms from unstructured ASCII text,
we probably might succeed in defining a reusable method.
However, if we want to consider other input as well,
e.g. structured text, and derive, for instance, indexing fea-
tures that are annotated with their position within the
source, the situation is far more complicated. It is unreason-
able to assume that such advanced methods can be devel-
oped without considering interrelations. Taking these
arguments into account, the class library approach seems
too restricted and not well suited for developing reusable
software in the IR domain. Thus, we are working toward a
framework for providing reusable software in the IR
domain.

3. Design criteria

The question “what are the characteristics of a good
framework and how is one designed” has been discussed in
the literature, for instance in Wirfs-Brock & Johnson [1990]
and Booch [1994]. Most of the publicized frameworks focus
on user interfaces and are relatively domain-independent.
The framework described in this paper is, in contrast, spe-
cialized to a particular domain, IR. Thus, special require-
ments are imposed. In the following, we will discuss these
requirements and outline the design criteria which we con-
sider most important for developing a reusable framework
for the IR domain.

3.1 Generalization

A framework is usually developed to support a whole
set of related applications in contrast to developing individ-
ual applications from scratch

.

 In the IR domain, we face the
problem that we do not know in advance what kind of infor-
mation units shall be managed in a specific application. Nor
do we know how they shall be represented. Moreover, a
useful IR framework should provide the option of applying
different models for indexing and retrieving information
(e.g. the probabilistic or the vector space model). To cope

with these problems, we need to develop a

generic

 model
for managing and retrieving information.

3.2 Well-defined scope

The scope of an IR framework has to be defined very
carefully in order to achieve reusability. With an underspe-
cified framework, application developers have to redesign
and recode their solutions over and over despite the fact that
a solution might be equivalent for differing applications. By
overspecification, we may impose unnecessary constraints,
thus making the development of an application more diffi-
cult and restricting the reusability of the framework. From
our experience, the scope of an IR framework should be as
follows:
• The framework has to define the basic concepts of the

IR domain (index, indexing feature, query, etc.) and the
relations between them. To define the interaction
between the IR concepts and the information units to
be indexed and retrieved, we also need a generic model
of the representation of information units.

• As already discussed above, the modeling of informa-
tion units cannot be covered by a framework, but must
be done individually. However, an IR framework can
support the application developer by providing ele-
mentary data types that are frequently used in the IR
domain to represent information units (e.g. name, date,
bibliographic reference, etc.) and by specifying a set of
general methods on these data types (present, edit,
match, etc). Our idea is that an application developer
models information units by composing such elemen-
tary data types rather than modeling information units
from scratch.

• In dealing with information, some general tasks must
be solved that are largely independent of the function-
ality envisaged by an application. These tasks are the
creation, storage, and removal of information units as
well as the controlled access to the units stored in a
system. It is important that an IR framework cares
about access control as access privileges are often to be
considered when presenting and manipulating informa-
tion units.

3.3 Transparency

Frameworks are “white boxes” (Wirfs-Brock et
al. [1990]). Therefore, transparency is generally a crucial
design criterion. In the IR domain, there are additional
requirements with regard to the modeling of information
units and the organization of the retrieval process. A trans-
parent modeling of information units is an important prere-
quisite for building flexible user interfaces, which for
instance present information in a situation-specific manner
(how shall a user interface present information flexibly
without ‘knowing’ what it is presenting?). Consequently, an
IR framework has to provide constructs for delivering
metainformation. Making the retrieval process transparent
is important for the development of user interfaces, too.

3

Consider for instance a user interface that aims at helping
the user to optimize a complex query by drawing the atten-
tion to the effects of single search conditions and their pos-
sible combinations. This requires some knowledge about
the evaluation of a query.

3.4 Efficiency

Similar to the properties mentioned earlier, efficiency
in execution is also of general importance. The developer of
a framework has to devote special attention to the time-con-
suming operations of an IR system. These are essentially
search and approximate match algorithms. In the first case,
a framework cannot offer general solutions, but can provide
facilities to reduce computing complexity by restricting the
search space. In the second case, efficiency can be increased
both by a type-specific index organization (e.g. providing a
sorted index for numerical values) and by carefully tuned
matching methods.

The acceptance of a framework will depend essentially
on the efficiency of its implementation. Providing general
constructs and techniques to support efficiency in execution
is a particular challenge. Furthermore, with a well-designed
framework, it should be possible to replace basic methods
by optimized methods for time-critical algorithms of the
specific application to be developed.

4. The FIRE object model

 In this section, we outline the FIRE object model. The
design and implementation of FIRE is based on an object-
oriented approach. First, we give an overview of the class
hierarchy. Subsequently, we present those classes in more
detail which are most important for IR. Our goal is to con-
vey the basic ideas underlying the object model. Therefore,
we present the model in a slightly simplified way and omit
some of the technical details.

The object model of FIRE defines the basic IR con-
cepts and supplies constructs that support the realization of
an IR application. The modeling of concrete types of infor-
mation units (e.g. books, tables, etc.) is not part of the object
model as this is an application-specific task. To avoid mis-
understandings, we use the term ‘object model’ for the con-
cepts and constructs provided by FIRE and the term ‘data
model’ for the application-specific modeling of information
units.

4.1 Sketch of the class hierarchy

The class

InformationObject

 constitutes the root of the
class hierarchy. It defines the basic operations for managing
and manipulating information units in a system. Further-
more, this class defines the basic constructs for controlling
the access to information units. Via inheritance, these con-
structs are also defined for the descendants of

Informa-
tionObject

. This is essential for a consistent control of
information access.

InformationObject

 is an abstract class which serves to
handle communalities between classes. All operations of

InformationObject

 are abstract operations which provide a
uniform interface. The implementation of these operations
must be done by concrete subclasses. Figure 1 shows the
operations defined by

InformationObject

. For describing
classes and objects, we use the notation developed by Rum-
baugh et al. [1991]. For those not familiar with the notation,
we explain the most important symbols in Figure 2.

Figure 1:

Operations defined by

InformationObject

Figure 2:

Legend to figures

InformationObject

create, remove
present, edit
setOwner, getOwner, setGroup, getGroup
setAccessPrivileges, getAccessPrivileges

Class Name

attribute
attribute: data type
attribute: data type = init_value

operation
operation (arg_list) : return_type

Class:_

Class NameAbstract class:_ Class NameConcrete class:_

Superclass

Subclass-1 Subclass-2

Generalization (Inheritance):_

Class Zero or more

Class Zero or one

Multiplicity of Associatons:_

Assembly Class

Part-1 Class Part-2 Class

Aggregation:_

Association Name

Class-1 Class-2

Qualified Association:_

Class-1 Class-3

Class-2

Ternary Association:_

Object Instance:_ (Class Name)

attribute_name = value

4

InformationObject

 has three subclasses which are also
abstract classes. These classes are shown below:

Figure 3:

Subclasses of

InformationObject

LinkableInfoObject

is the base class of all objects that
can be linked to other objects. It offers operations for defin-
ing and removing links and operations for following a link
to its source or destination. The most important subclasses
of

LinkableInfoObject

 are

ReprInfoUnit

,

InformationStock

and

QueryRecord

. These classes have fairly different func-
tions.

ReprInfoUnit

, which is described in section 4.2, pro-
vides a basic skeleton for modeling the information units to
be managed by an application,

InformationStock

 can be
used to structure a database, and

QueryRecord

 supplies
information about queries.

By the use of

InformationStock

 the usually large
number of

ReprInfoUnit

 objects stored in a database can be
partitioned. Partitioning can be done recursively since an

InformationStock

 object may contain other

Information-
Stock

 objects. Furthermore, an object may belong to differ-
ent

InformationStock

 objects. This class helps to delimit
computing effort by restricting the search space.

QueryRecord

 serves to record queries and their results.
An object may record a whole query as well as a single con-
dition of a query (the modalities are controlled by

ReprIn-
foUnit

 and its subclasses). Since this class is a subclass of

LinkableInfoObject

, we can establish links between objects.
In this way, we can record a complex query in a fine-grained
manner and preserve the relations between its constituents.
Such a declarative description of a query and its evaluation
supports the development of advanced user interfaces.

InfoObjectElement

 defines a set of data types that are
to be used for the application-specific modeling of informa-
tion units. This class is described in more detail in
section 4.3.

The class

Index

 is responsible for managing the index-
ing features derived for information units. Moreover, it sup-
ports the retrieval of information. We elaborate on this class
in section 4.4.

4.2 Class “ReprInfoUnit”

The class

ReprInfoUnit

 serves to realize an applica-
tion-specific data model. Concrete subclasses of

ReprInfo-
Unit

 define how information units of a certain type are
represented in a particular application. Dealing with text for
instance, there may be features like

Title

,

Authors

,

Text

, and

PublicationDate

. Such modeling is part of the data model of
an application. In order to make the data model transparent
and provide an application-independent interface, the defi-

InformationObject

LinkableInfoObject IndexInfoObjectElement

nition of

ReprInfoUnit

 includes an attribute, called

Data-
Dictionary

, that can be used to supply metainformation.

2

ReprInfoUnit

 and its subclasses are responsible for
organizing the indexing and retrieval of the information
units they are representing. The modalities can be defined
specifically for each of the features constituting a

ReprInfo-
Unit

. For specifying indexing modalities,

ReprInfoUnit

 pro-
vides a generic ternary relation between the value of a
feature, which is an

InfoObjectElement

, the class

Index

 and
the class

IndexingFeature

. This relation is qualified by the
class

IndexingParams

 which serves to specify the parame-
ters to be used for indexing. Figure 4 shows this generic def-
inition.

When modeling a subclass of

ReprInfoUnit

 for repre-
senting a certain type of information units, the application
developer can define for each feature
• by which methods the feature values are to be indexed,
• the type of the indexing features to be derived and
• by which indexes the results are to be managed.

The definition of

ReprInfoUnit

 also allows the applica-
tion of different methods and parameters for the same fea-
ture values in parallel. Figure 5 shows as example a
concrete subclass of

ReprInfoUnit,

called

 ReprText,

that

rep-
resents textual units by a feature “Text” and a feature
“Authors”. The “Text” feature is indexed by different meth-
ods using specific parameters and the results are kept in dif-
ferent

Index

 objects.

Figure 4:

Generic definition for specifying indexing modalities

The modalities for retrieving information are specified
in a quite similar way. Here, a ternary relation is defined
between the value of a

Feature

, the class

Index

 and the class

IndexEntry

. The relation is qualified by the class

Matching-
Params

.

2. At present, the application developer has to provide meta-
information. We will investigate how we can support the applica-
tion developer in integrating a data model in the object model of
FIRE and how the framework can automatically provide meta-
information.

ReprInfoUnit

Feature

name: String

InfoObjectElement

Index

IndexingFeature

value

IndexingParams

5

Figure 5:

Example of a concrete subclass of

ReprInfoUnit

4.3 Class “InfoObjectElement”

The class

InfoObjectElement

 defines a set of data types
that are intended to be used for the application-specific
modeling of information units. The framework comes with
definitions for elementary data types like string, integer,
name, date, set, and list (see Figure 6). If needed, this set of
data types can be easily extended by the application devel-
oper.

InfoObjectElement

 helps to reduce the effort for devel-
oping an application and supports a uniform representation
of information units, e.g. the author of a paper is specified in
the same way as the author of a chart table.

Figure 6:

InfoObjectElement

 and some of its subclasses

Feature

name = "Text"

IOE-Text

(IP-Text)

(IP-Text)

method = "Text-1"
language = "German"
stopwords = ["ab","an", …]

method = "Text-3"
language = "German"
stopwords = ["ab","an", …]

(I-Inv-File-Text-1)

(I-Inv-File-Text-3)

IF-Text-1

IF-Text-3

value

Feature

name = "Authors"

IOE-PersonName

IF-PersonName(I-InvFile-
PersName)

(IP-0)

method = "Soundex"

value

ReprText

InfoObjectElement

IOE-List

IOE-Set

IOE-PersonName IOE-Date

IOE-IntegerIOE-String . . .

The class definition of

InfoObjectElement

 includes an
attribute, called

manifestation

, that serves to store the object
represented by an instance. Furthermore,

InfoObjectElement

provides operations for solving matching and indexing
tasks. The definition of

InfoObjectElement

 is depicted in
Figure 7. To keep the design as simple as possible, we use
the shortcuts

IOE-Set of <Class>

 and

IOE-List of <Class>

.
The first shortcut denotes a set and the second a list of
objects of the given type. During implementation, the short-
cuts will be expanded and respective subclasses of

IOE-Set

and

IOE-List

 will be defined in order to support type check-
ing.

Figure 7:

Definition of

InfoObjectElement

The operation

match

 calculates the similarity between
two objects. One of these objects is the object receiving a

match

 message; the other object is given by an address. The
address of an

InformationObject

 is specified by an object of
the class

 IO-Address

.

A concept for addressing an

InformationObject

 is of
general importance, e.g. in modeling links, indexing fea-
tures, and index entries. Therefore, we have decided to pro-
vide a general definition (see Figure 8). The FIRE model
supports complex objects, i.e. objects composed of other
objects. An

IO-Address

specifies a root object, i.e. the
assembly object. By recursively giving a discriminator,
e.g. the name of a feature, and the identifier of a constituent
object, the address of an

InformationObject

 can be specified
at any level of detail.

Figure 8:

IO-Address

 and two important subclasses

For certain types of

InformationObject

s, an internal
address may also be specified. Figure 9 shows as example
the definition of internal addresses of texts and images.

InfoObjectElement

manifestation

match(cmpO : IO-Address) : Real
matchSet(self : IO-Address,
 cmpOs : IOE-Set of IO-Address) :
 IOE-Set of MResultReal
getIndexingFeatures(source : IO-Address) :
 IOE-Set of IndexingFeature

. . .IO-Addr-Image

internalAddr

IOE-IntAddr-Image

IO-Addr-Text

internalAddr

IOE-IntAddr-Text

IO-Address
InformationObject

IO-Path

discriminator: String

root
path

6

Figure 9: IOE-InternalAddress and two concrete subclasses

The calculation of the similarity of objects depends on
the type of the objects and on the methods to be applied.
Different matching methods may require quite different
parameters. A method developed for integer values for
instance may consider the mean value and the standard
deviation of a collection, while a method designed for
strings may take the phonetic similarity to a certain degree
into account. To achieve a uniform interface, we define a
class MatchingParams and a set of subclasses that cover the
different extensions of matching parameters (see Figure 10).

Figure 10: MatchingParams and a few subclasses. MP-0 is defined
for matching methods that do not require specific parameters.

As a further complication, different matching methods
may be defined for a single subclass of InfoObjectElement,
e.g. matching of integers with or without context informa-
tion. To provide a uniform solution and to support a trans-
parent modeling, InformationObject is twofold associated
with MatchingParams (see Figure 11). The first relation,
definedMP, serves to specify which methods and which
combinations of parameters are defined for a given subclass
of InformationObjectElement. The second relation,
activeMP, may be used to select one of the methods as the
one actually to be used.

Figure 11: Relations between InfoObjectElement and Matching-
Params

IOE-IntAddr-Image

region : String
layer : String

IOE-IntAddr-Text

level : String
cardinality : Integer

IOE-InternalAddress

. .

. . .

MP-Integer

MP-0

method = "integer1"
meanValue : Real
standardDeviation : Real
distanceMinMaxValue : Real

MP-String

method = "string1"
phoneticFactor : Real

MatchingParams

method : String
minMDegree: Real

MatchingParamsInfoObjectElement
definedMP
activeMP

Concrete subclasses of InfoObjectElement may pro-
vide default MatchingParams. For an InfoObjectElement
instance, individual parameters may be defined by associat-
ing it with a MatchingParams instance via an activeMP link
(see for example Figure 12).

Figure 12: An InfoObjectElement instance, for which individual
parameters are defined.

InfoObjectElement provides an additional operation,
matchSet, that allows to compare an object with a whole set
of objects. This matching mode is especially convenient if
matching is based on the calculation and comparison of
keys, e.g. hash codes, phonetic keys or n-grams. With opti-
mized matching methods, the key for a given object needs
to be calculated only once rather than being repeatedly
recalculated.

The operation getIndexingFeatures derives indexing
features from an InfoObjectElement. The operation is given
the address of the assembly object as parameter to associate
the IndexingFeatures appropriately with their source.

For providing indexing parameters, we have chosen a
similar approach as has been described for matching para-
meters, since we encounter quite similar problems. InfoOb-
jectElement is related to the class IndexingParams by a
definedIP and an activeIP link. Subclasses of InfoObject-
Element define concrete parameters. In contrast to Match-
ingParams, it is unreasonable to define individual
parameters for an InfoObjectElement instance, since an
object is hardly retrievable without knowing how it is
indexed.

The result of a getIndexingFeatures operation is
described by IndexingFeature objects. An IndexingFeature
principally consists of a feature, which is an InfoObjectEle-
ment, and a source specification (see Figure 13).

Figure 13: Generic definition of an IndexingFeature

Additionally, an IndexingFeature may be associated
with a position within the source. Figure 14 shows as exam-
ple a few concrete subclasses of IndexingFeature, for which
a position is defined.

(IOE-Integer)

manifestation = 27

(MP-Integer)

method = "integer1"
meanValue = 400
standardDeviation = 0.86
distanceMinMaxValue
 = 999

activeMP

IndexingFeature
InfoObjectElementfeature

IO-Address
source

7

Figure 14: A few concrete subclasses of IndexingFeature

4.4 Class “Index”

The class Index is responsible for solving special
indexing and retrieval subtasks. It defines a set of abstract
operations (see Figure 15), which provide a uniform inter-
face independent of a particular retrieval model.

Figure 15: Operations of Index

The operation createIndexEntries derives IndexEntry
objects from a given set of IndexingFeatures. This operation
does not cause any updating, e.g. sorting the entries of an
inverted file or calculating weights. Such tasks have to be
invoked explicitly by an update message. We chose to sepa-
rate the processes in order to avoid unnecessary computa-
tions, for instance sorting an Index again and again when
indexing a whole set of InformationObjects.

By the operation retractIndexEntries, the IndexEntry
objects referring to a given set of InformationObjects can be
retracted. The operation clear removes all entries of an
Index. Furthermore, Index defines operations for providing
information about an Index. These are the operations whose
names start with ‘get’ (see Figure 15).

The Index receives a query in form of a set of IndexEn-
try objects. The retrieval process and the origin of the Index-
Entry objects are explained in section 5.

IF-Text-1

IOE-String

feature

IF-Text-2

IOE-String

IOE-LocText

feature position
IOE-List of IOE-String

IOE-LocText

feature position

IF-Text-3

length : Integer

IF-Text IOE-Addr-Textsource

Index

createIndexEntries(features :
 IOE-Set of IndexingFeature) : Boolean
retractIndexEntries(sources :
 IOE-Set of IO-Address) : Boolean
update() : Boolean
clear() : Boolean
getAllSources() : IOE-Set of IO-Address
getIndexingFeatures(source : IO-Address) :
 IOE-Set of IndexingFeature
getIndexEntries(source : IO-Address) :
 IOE-Set of IndexEntry
retrieve(query : IOE-Set of IndexEntry) :
 IOE-Set of MResultReal

For an efficient retrieval, different types of indexing
features and retrieval models require specific types of index
structures, e.g. B-trees or sorted lists. These structures are
provided by subclasses of Index (see Figure 16). Index-
Unordered for instance stores IndexEntry objects in an
unordered list by using hash codes, while Index-InvertedFile
works with an ordered list of entries.

Figure 16: Subclasses providing specific index structures

An Index for a specific type of information unit or a
specific retrieval model is built by introducing a new sub-
class. Essentially, the application developer has only to
define the structure of the IndexEntry objects and provide
the methods specific to the envisaged retrieval model. I-Inv-
File-Text-1 of Figure 17 is an example of such a concrete
Index class.

Figure 17: A concrete Index subclass

In FIRE, we distinguish between indexing features and
index entries. IndexingFeatures are the items derived by
indexing InformationObjects. An Index derives from these
features IndexEntry objects, which provide the basis for
retrieving information. The structure of an IndexEntry
depends on the type of the Index. An IndexEntry for an
inverted file consists of a key and a set of postings. A post-
ing specifies the source where the feature occurs. Addition-
ally, it may specify the position of the feature within the
source. Figure 18 shows a concrete subclass of IndexEntry
which allows the position of a feature to be specified.

Figure 18: A concrete subclass of IndexEntry

Index

Index-Unordered Index-InvertedFile . . .

I-InvFile-Text-1

getNumberOfInformationObjects
getMaxFreqOfAnyIndexingFeature
getFreqOfIndexingFeature
getFreqOfIndexingFeatureInSource

entry

WeightedIE-InvFile-Text-1

InfoObjectElement

key

IndexEntry-InvertedFile

Posting-IE-InvFile
IO-Address

IOE-InternalAddress

source
position

posting

8

5. Indexing and retrieval with FIRE

5.1 Indexing

FIRE divides indexing into three tasks:
1. Organization of the indexing process
2. Derivation of indexing features
3. Management of the indexing features derived and cal-

culation of the data needed for realizing a specific
retrieval model, e.g. corpus information, or indexing
weights.

The indexing process is organized by ReprInfoUnit
objects. This way we can index the different features of a
ReprInfoUnit individually. The derivation of IndexingFea-
tures is done by InfoObjectElements, the feature values of
ReprInfoUnit objects. This is a satisfactory way, since these
objects know best the necessary details about their internal
structure. The IndexingFeatures derived are managed by an
Index object which also provides the required data about the
features and the corpus.

Indexing is initiated by sending an index message to a
ReprInfoUnit object. The object passes the individual
details about the indexing modalities to its feature values
and invokes the derivation of IndexingFeatures by a
getIndexingFeatures message. The IndexingFeatures are
sent to the Index object specified by the respective indexing
modalities. Finally, an update message may sent to the
Index objects in order to invoke necessary updating opera-
tions. The organization of the indexing process is depicted
in Figure 19.

Figure 19: Typical interaction trace for performing indexing

This way of organizing the indexing process has several
advantages:
• The framework does not impose a specific indexing

technique and the overall organization of the indexing
process is independent of a particular method.

• Different indexing techniques can be applied in paral-
lel.

• The results achieved for a feature value by applying
different methods can be managed by separate indexes.
This prepares the basis for working with different
retrieval models in parallel.

Application
or User

Repr-
InfoUnit

InfoObjectElement
(feature value of
a ReprInfoUnit)

Index

index passes
IndexingParams

getIndexingFeatures
IOE-Set of
IndexingFeature

createIndexEntries

update

5.2 Retrieval

FIRE favors retrieval interfaces where the user creates
a model information unit by (partially) filling a template to
specify the information need (similar to query-by-example).
Such interfaces are comprehensible and easy to use, and –
from a software-engineering point of view – the framework
can offer most support to the application developer. How-
ever, FIRE is not restricted to query-by-example interfaces,
but also allows other approaches.

A template-based query is created, represented, and
indexed in quite the same way as an information unit to be
stored in a FIRE application. This way, it makes no differ-
ence whether we create a query object or use an existing
ReprInfoUnit as query. Further, we avoid having to define
separate methods for solving similar tasks.

In FIRE, the object representing a query is responsible
for organizing the retrieval process. It determines the order
by which the individual conditions are to be evaluated and
combines the partial results achieved.

Figure 20: Typical interaction trace for retrieving information

The user can specify the retrieval modalities individu-
ally for each of the feature values of a ReprInfoUnit object,
e.g. choose the Indexes to be looked up or select a specific
matching method. Before starting retrieval, the ReprInfo-
Unit object representing a query is indexed. However, this is
only done if the object has not already been indexed, since it
is an object of the application database. The retrieval proc-
ess is invoked by sending a retrieve message to a ReprIn-
foUnit object. ReprInfoUnit asks the respective Index for the
resulting IndexEntry objects. It passes the MatchingParams
to be used to the InfoObjectElements that constitute these
IndexEntry objects. Finally, the entries are given to the
Index to be looked up as parameter of the retrieve operation.

Applicaton
or User

Repr-
InfoUnit

InfoObjectElement
(part of an
IndexEntry)

Index

create, edit

sets retrieval
modalities

retrieve
index

getIndexEntries

IOE-Set of
IndexEntry

passes
MatchingParams

retrieve

match

MatchingResult

IOE-Set of
RetrievalResult

IOE-Set of MatchingResult

9

Note, the Index keeping the entries of a query and the Index
to be looked up may be different objects. The Index dele-
gates matching tasks to the InfoObjectElements involved.
This is convenient, since the Index does not have to care
about the type of indexing features it is managing. Figure 20
illustrates the retrieval organization.

In FIRE, the parts specific to a retrieval model are con-
centrated in two classes, namely Index and ReprInfoUnit.
The overall retrieval process is independent of the retrieval
model(s) implemented. In a framework, this is highly desir-
able, since extensions and modifications are easier to per-
form if they affect only a small set of classes.

6. Conclusions and future work
We have identified essential criteria for the design of

reusable software in the IR domain and have presented the
object model underlying FIRE. In particular, we have
shown that with appropriate generalizations and abstrac-
tions we can provide a program skeleton that allows to real-
ize various indexing techniques and retrieval models.
Furthermore, a FIRE application may work with different
indexing and retrieval techniques in parallel.

We are currently implementing the basic concepts of
the FIRE object model including approximate matching
methods for various data types. The implementation of
FIRE is based on ET++, cf. Weinand et al. [1989]. The per-
sistent storage of objects is handled by ObjectStore. Object-
Store and ET++ are fully integrated.

In the future, we will focus on
• supporting the application developer in integrating the

data model of an application into the object model of
FIRE, and

• providing basic facilities for dealing with different
media.

The development of applications will also be a signifi-
cant part of our work, since a framework needs applications
to validate its strategic and tactical decisions (cf. Booch
[1994]).

Acknowledgements
The authors would like to thank David Harper, Dave

Hendry and Jan-Jaap IJdens from the Robert Gordon Uni-
versity, Aberdeen, as well as Daniel Hümbeli of UBILAB
for fruitful discussions on the FIRE model. Thanks also to
Tore Bratvold, UBILAB, for his support on finishing this
paper.

References
Booch [1994]:

G. Booch: Object-Oriented Analysis and Design (Second
Edition). Redwood City/CA: Benjamin/Cummings, 1994

Callan et al. [1992]:
J.P. Callan, W.B. Croft and S.M. Harding: The INQUERY
Retrieval System. In: Proc. 3rd Int. Conf. On Database and
Expert System Application, pp. 78-83, 1992

Frei & Stieger [1995]:
H.P. Frei and D. Stieger: The Use of Semantic Links in
Hypertext Information Retrieval. In: Information Processing
and Management, Vol. 31, No. 1, pp. 1-13, 1995

Fuhr [1992]:
N. Fuhr: Integration of Probabilistic Fact and Text Retrieval.
In: Proc. of the 15th Annual Int. ACM SIGIR Conference on
R & D in Information Retrieval (SIGIR-92), pp. 211-222,
1992

Glavitsch & Schäuble [1992]:
U. Glavitsch and P. Schäuble: A System for Retrieving
Speech Documents. In: Proc. of the 15th Annual Int. ACM
SIGIR Conference on R & D in Information Retrieval
(SIGIR-92), pp. 168-176, 1992

Halasz & Schwartz [1994]:
F. Halasz and M. Schwartz: The Dexter Hypertext Reference
Model. In: Communications of the ACM, Vol. 37 (2), pp. 30-
39, 1994

Harper & Walker [1992]:
D.J. Harper, and A.D.M. Walker: ECLAIR: An Extensible
Class Library for Information Retrieval. In: The Computer
Journal, Vol. 35 (3), pp. 256-267, 1992

Hemmje et al. [1994]:
M. Hemmje, C. Kunkel and A. Willett: LyberWorld – A Visu-
alization User Interface Supporting Fulltext Retrieval. In:
Proc. of the 17th Annual Int. ACM SIGIR Conference on
R & D in Information Retrieval (SIGIR-94), pp. 249-258,
1994

Krueger [1992]:
Ch.W. Krueger: Software Reuse. In: ACM Computing Sur-
veys, Vol. 24(2), pp. 131-183, 1992

Rumbaugh et al. [1991]:
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and
W. Lorensen: Object-Oriented Modeling and Design. Engle-
wood Cliffs/N.J.: Prentice Hall, 1991

Salton [1971]:
G. Salton: The SMART Retrieval System – Experiments in
Automatic Document Processing. Englewood Cliffs/N.J.:
Prentice Hall, 1971

Wirfs-Brock & Johnson [1990]:
R.J. Wirfs-Brock and R.E. Johnson: Surveying Current
Research in Object-Oriented Design. In: Communications of
the ACM, Vol. 33 (9), pp. 104-124, 1992

Wirfs-Brock et al. [1990]:
R. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-
Oriented Software. Englewood Cliffs/N.J.: Prentice Hall,
1990

Weinand et al. [1989]:
A. Weinand, E. Gamma, R. Marty: ET++ – An Object-Ori-
ented Application Framework in C++. In: Object-Oriented
Programming Systems, Languages, and Applications Confer-
ence Proceedings, pp. 46-57, 1988

