Computer Supported Cooperative
Softwar e Engineering with Beyond-Sniff

Walter R. Bischofberger, Thomas Kofler,
Kai-Uwe Métzel, Bruno Schéaffer
UBILAB, Union Bank of Switzerland
Bahnhofstr. 45, CH-8021 Zurich
e-mail: { bischofberger, kofler, maetzel, schaeffer} @ubilab.ubs.ch

Abstract

Teamwork is a prerequisite for the development of
large complex software systems. In conventional software
engineering coordination of teamwork is achieved by
exchanging formal documents and by providing support
for keeping these documents consistent even while
several developers are evolving them.

In order to support teamwork more effectively it is
important to move the focus beyond coordination towards
cooperation. The goal of the Beyond-Siff project is to
provide cooperation support in three ways. First, by
providing a terminological and conceptional foundation
for the field of cooperative software engineering. Second,
by developing tools for computer supported cooperative
software engineering. Third, by developing a platform for
control and data integration, a technical prerequisite for
computer supported cooperative software engineering.!

1 Motivation and Overview

Software systems tend to have a more and more
complex and comprehensive view on the application
domains they model. The complexity of these systems
goes hand in hand with the difficulties (the amount of
efforts to be invested for their development) arising
during their development. This is an important reason
why the implementation of even modest software
systems can only be carried out effectively as an
iterative and cooperative process.

Communication and coordination are prerequisites
to successful cooperation. Their quality strongly affects
team productivity and the resulting products.
Unfortunately, the costs of satisfying communication
and coordination needs quickly reach unacceptable
dimensions. These costs naturally limit the size of
closely cooperating teams and therefore, also the size
and complexity of projects that can be carried out
cooperatively.

Since we have (or want) to stretch the limits
created by the negative side effects of cooperation, we
need methods and tools that explicitly address
communication and coordination. The provision of
suitable methods and tools and their application are the
core of an emerging discipline that is called cooperative
software engineering. A sensible and promising approach
to cooperative software engineering is the enrichment of
conventional software engineering by concepts found in

1 published in Procs. of the 7th Conference on Software Engineering
Environments, Noorwijkerhout, Netherlands, 5-7 April 1995.

the field of computer supported cooperative work
(CSCW).

11 Motivation for the Beyond-Sniff Project

Based on our experience in developing large object-
oriented software systems we began in 1991 to develop
Sniff, an innovative C++ programming environment [1]2.
We drew the motivation for this project from the facts
that the characteristics of object-oriented software
development strongly increases the requirements for
development environments [3] and that, at that time, our
personal needs were not fulfilled by any available
environment.

Sniff proved to be very useful for browsing, editing
and executing large object-oriented software systems.
The longer we use it in our team, the more it becomes
clear that its conventional way of supporting cooperation
with a configuration management system is far from
optimal. Configuration management helps to organize
the development process of large projects but it
addresses only few problems of cooperation. For
instance, it ignores the exchange of arbitrary information
related to projects. In other words: there are no facilities
for computer supported know-how transfer or fine grained
harmonizing of activities.

A useful cooperative development environment
should provide such support. Therefore it has to comprise
facilities for flexible communication between coworkers
and for attaching arbitrary information to all kinds of
project artifacts. Typical information to be exchanged or
attached are rationales for structure and evolution of
subsystem interfaces as well as myriads of detailed
design decisions.

Neither current software engineering nor
development environments and their underlying
architectures are suited to provide comprehensive
cooperation support. This insight provided us with the
motivation to start the Beyond-Sniff project.

The goals of the Beyond-Sniff project are to
develop a conceptual framework for cooperative
software engineering, and to build the development
environment needed for its enactment. This environment
requires a platform that allows to integrate a set of
existing and new tools into a cooperative software
development environment.

2 gniff was commercialized under the name of SNiFF+ at the end of
1992. The product version is free for universities and can be
downloaded by ftp from eunet.co.at (/pub/vendor/takefive) or from
self.stanford.edu (/pub/sniff).

12 Contents

Section 2 outlines two forms of cooperation we
identified and defines the term Cooperative Software
Engineering (CSE). Based on these definitions it
investigates currently employed approaches to
cooperative software engineering. Section 3 describes
the Beyond-Sniff approach to support CSE. Section 4
provides some background on the realization of Beyond-
Sniff and outlines the relationship between our approach
and related work. Section 5 draws conclusions.

2 Cooperative Softwar e Engineering

The terms "cooperative software engineering" and
"computer supported cooperative software engineering”
are used in different contexts with different meaning.
There is no generally accepted definition for them. For
this reason this section defines the term Cooperative
Software Engineering (CSE) and discusses state-of-the-
art approaches to support it.

21 Formsof Cooperation

We assume an intuitive understanding of the term
cooperation. Cooperation usually implies shared goals
among different actors [17]. Coordination is managing
dependencies between activities. Coordination is an
important part of cooperation.

We identify two forms of cooperation, policy-driven
and informal cooperation. Policy-driven cooperation is
done by exchange and correct handling of well-
structured documents and concurrency control regarding
the access to artifacts. Informal cooperation is
characterized by the unrestricted exchange of structured
or unstructured information.

Policy-driven cooperation comprises all
coordination activities specifically organized for a
software development process.

* It isregimented by a formal agreement about how a
project has to be carried out. For small projects such
an agreement can be relatively simple. For large
projects or families of projects it is usually described
in a project management handbook.

* The cooperation model defined in the agreement is
implemented by a well-defined exchange of well-
structured documents.

» It is supported by tools for controlling the evolution
and management of these documents, such as
configuration management tools, process engines,
and work flow applications.

Informal cooperation comprises all coordination

activities that were not formally planned.

* Itisinherently not regimented.

e« It is implemented by spontaneous, flexible,
pragmatic exchange of information between project
members.

e It is supported by everything that eases
communication. Besides nearness in time and space
these are mechanisms and devices such as e-mail,

video conferencing, textual annotations of artifacts,

and tools for extracting information from source code.
No matter how a software process is organized and
regimented it always comprises policy driven and
informal cooperation activities. The challenge of project
management is to work toward an optimal relation
between them, depending on the specific characteristics
of a project.

2.2 The Nature of Cooper ative Software
Engineering
Based on the term software engineering, as defined
by Pomberger [20] and on the terms introduced above
we can define Cooperative Software Engineering (CSE)
as follows:

Cooperative software engineering comprises all
software engineering methods, norms and tools that
support teamwork flexibly and effectively.

Cooperative software engineering is therefore a
subset of classical software engineering. Tools support
CSE if they fulfill the following requirements: They
provide mechanisms for policy-driven and informal
cooperation as well as for access control, and the
mechanisms are completely integrated into the tools.

The following examples illustrate this definition. A
syntax driven editor supporting distributed simultaneous
editing is no CSE tool because it does not support
policy-driven cooperation. A documentation tool
comprising browsers for information acquisition,
supporting simultaneous editing and exchange of
documents between team members (if the privileges
permit it), is a CSE tool.

23 Approaches Related to Cooper ative Softwar e
Engineering

There is a variety of approaches supporting
cooperative work in general or cooperative software
engineering in particular. This subsection discusses how
conventional software engineering, process-centered
software engineering, and CSCW address cooperation,
and why neither approach fully meets the definition of
CSE.

Conventional Software Engineering. For conventional
software engineering coordination of concurrent
development is one of the major task of configuration
management. Pessimistic and optimistic approaches to
coordination are distinguished today [24].

Pessimistic coordination means that all developers
work on the same artifacts. The concurrent editing of the
same files is prevented by locking. In practice, this
approach fails as soon as the number of coworkers
exceeds a project-dependent but very low boundary.

During optimistic coordination each developer
works on his personal copy of the source code. From
time to time, the copies can be merged into a new
shared version. Conflicts between changes have to be
resolved during the merge process. The advantage of

-3-

optimistic coordination is that it makes it possible to
decouple developers almost completely for some time.
The price for decoupling is the need for merging. At the
merging phase, part of the communication that has been
postponed now takes place in a more concentrated
manner. Decoupling pays off because the cost of
postponing and merging are usually much smaller than
the benefit obtained.

Pessimistic and optimistic coordination are
supported by configuration management tools. Both are
forms of policy-driven cooperation. Informal cooperation
is not addressed—on purpose-by conventional software
engineering, which is a consequence of the basic
assumption that software development can be carried
out top-down as a tailoristic, rigidly sequential process.
Although this basic assumption is today generally
considered wrong (e.g., [2, 4]), informal cooperation is
still not addressed by software engineering.

Process-Centered Software Engineering. Process-
centered software engineering tries to establish a
comprehensive theoretical basis for understanding,
describing, and enacting specific software processes [15,
19].

The basic idea is to describe a specific software
process with all the activities and information flows it
comprises. The resulting process model is represented as
a set of rules that define in which sequence under which
preconditions which documents may be modified with
which tools. With the same mechanism invariants for
the usage of tools are defined [14]. A process model is
enacted by executing it with a process engine, which is
the hub of every process-centered development
environment. The process engine controls the
application of all tools. Tool integration hence is a
prerequisite for practical process-centered software
engineering.

Process-centered software engineering is still in its
infancy but receives great attention by researchers. This
is manifested by the International Software Process
Workshop and International Conference on the Software
Process series. We believe that it will take considerable
research efforts before process-centered software
engineering comes into widespread use.

Process-centered software engineering is a
consequent evolution of conventional software
engineering approaches. Its purpose is to optimize
policy-driven cooperation without addressing informal
cooperation.

Computer Supported Cooperative Work (CSCW).
The goal of CSCW [26, 12] is to assist groups in
communicating, in collaborating, and in coordinating
their activities. Ellis et al. propose a time and space
taxonomy for CSCW tools [26] as depicted in figure 1.
Meeting room technology would be within the upper left
cell; a real-time document editor within the lower left
cell; a bulletin board within the upper right cell; and an
electronic mail system within the lower right cell.

Tools located in any cell of this taxonomy can be
useful for CSE. This is true for all general purpose
CSCW tools, athough they do not fulfill our definition
of CSE. Due to the relative immaturity of the field of
CSCW there are not many systems in actual use for
software engineering besides e-mail and bulletin boards.

There are also a few tools that were specifically
developed for CSE. They mostly provide support in
synchronous editing and debugging (e.g., [7, 13]). We
would like to have this kind of tools available in daily
work (as well as many general purpose CSCW tools)
but we do not think that they address the most important
problems developers face today in cooperatively
developing large software systems.

Same Time Different Times

S Pl face-to-face| asynchronous
ame Flace| jnteraction interaction
synchronous| asynchronous

Different Places distributed distributed
interaction interaction

Figure 1. Time space taxonomy according to [26].

There are two areas where we foresee considerable
benefit in applying CSCW to software engineering. One
is the support of synchronous activities during the
analysis and design phases (e.g., [18]). The other is
support of asynchronous informal cooperation. Practical
tool support for both areas is missing today because
specific tools for CSE can only be built on top of a
comprehensive infrastructure that allows to integrate
sets of tools used by more than one developer. Research
on these problems is carried out in the field of tool
integration [24].

3 CSE with Beyond-Sniff

Considerable research for methods and tools
supporting cooperation is currently being carried out in
the areas of process-centered software engineering and
CSCW. We believe that results from both areas should
be practically applied as soon as they are available.
Unfortunately, the support of informal cooperation on
software development is neglected in both software
engineering and CSCW.

It is therefore important to do research in the area
where CSCW and CSE intersect. We have taken first
steps in this direction in developing Beyond-Sniff. This
section describes the innovative aspects of Beyond-Sniff
that support cooperation.

31 Informal Cooperation with Beyond-Sniff

Cooperative software development requires a lot of
communication between developers. The use of object
technology, which becomes increasingly popular, even
tends to exacerbate the communication problems among
developers. They often neglect to share small pieces of

-4-

information anyway, because the conventional way of
putting them into documents with fixed structure does
either not make sense or is too expensive. The worst, but
typical case is information that can not be formalized,
such as ideas, short term plans, or a set of remarks about
a class and its methods. It is difficult and tedious to
organize this kind of information in conventional
documents, to keep it up to date, and to make use of it.

It is therefore common that a developer is
interrupted by requests for some specific information
that nobody else can provide. Interrupts of that kind
affect the concentration and are counter productive if
they frequently occur. Facilities for asynchronous
communication can decrease the number of productivity
decreasing interruptions.

Developers working in the same building can satisfy
their need for information to a certain degree by
informally keeping each other up-to-date. This is no
more feasible for teams that have many members, or
that are separated by large distances. The
communication problems then lead to a permanent
information deficit or to a huge overhead, which both
reduce overall productivity.

We experienced these problems first hand when
Sniff was commercialized and certain parts were
finished in Zurich while work was already going on in
Salzburg. This was a strong motivation to develop an
annotation mechanism as part of the Beyond-Sniff
platform. This annotation mechanism makes it possible
to connect structured information with any kind of
artifacts, be it fine-grained artifacts such as classes and
instance variables or coarse-grained artifacts such as
projects and files.

A Beyond-Sniff annotation has a type that defines
which information fields it comprises. This makes it
possible to store different kinds of structured information.
Freguently used annotation types are, for example, error,
documentation, idea, and to-do annotations. Annotated
artifacts are visually marked in al Beyond-Sniff tools.
One mouse click suffices to display all annotations
connected with an artifact. Annotation types can be
extended by inheritance, and they are defined with a
graphical schema editor.

Annotations are centrally stored for every project
per site. A developer has either the possibility to access
an annotation via artifacts, or he can formulate an OQL
[6] query with a query tool to obtain all annotations
matching certain conditions. For example, it is possible
to obtain all idea or to-do annotations that have been
connected to a certain project since a given date. Figure
2 shows the query tool with an evaluated query. Figure 3
shows the screen after selection of a matching
annotation: The user sees that the class Symtabltem has
annotations. One of them is shown in a separate window.

In many situations, a developer wants to be notified
when an annotation is created. For that purpose, he can
define OQL trigger queries that are executed whenever
an annotation is created or modified. Upon a match the
developer is notified either with the Beyond-Sniff

notification tool or by e-mail. A developer might wish,
for example, to immediately see all error annotations
attached to the projects he is responsible for.

The central storage of annotations together with the
query and trigger query mechanisms makes it possible to
easily share information. For instance, there is no need
to bother about who might be interested in some
information. This reduces the communication overhead
by decoupling developers the same way as the
Smalltalk change propagation mechanism decouples
cooperating objects [10].

o AnnotationBrowser

— Search Expression

AnnotationType = Tolo and Projectiame = heh.proj
=nd Date » 1.8.94

= =
Clear

— AnnotationTypes - — Attributes . — Operators
annctation annctationType<String> =
ErrorAnnotation Date<Date> =
Codefnnetation Userld<String <
Myannotation FileName<String > I
ToDo ProjectName<Strings <=

TestAnnotation PubliczBoolean> »=

Priority<integer> contains

Description<Texst> and

) 1]

or

— fAnnotations
Matches: 2

|136.0.4-13 Tomo
[136.0.2-14 TeDo

bischi 05.08.94 |

05.08. 94

bischi

| Search |

Cancel

Figure 2. AnnotationBrowser.

Annotations are a mechanism for undirected
communication. Sometimes it is useful to make sure
that coworkers read a particular annotation. Beyond-
Sniff has two features for that purpose. First, an
annotation can be specifically addressed to developers.
Second, the creator can specify that he wants to be
automatically notified whenever an annotation is
opened.

Annotations are not only created manually but also
generated by tools. Annotations are generated, for
example, on check-in of a file into the version control
system, or when a project's structure is modified.

Beyond-Sniff's annotations are a hybrid approach to
information management. On one hand, they can be
used together with links to organize information as a
hypertext. On the other hand they have a structure
defined by a type, they are centrally stored and they can
be retrieved with a query mechanism. This integration of
hypertext and database approach makes it possible to
easily store structured information, to connect it with
any kind of artifact and to find them in different ways.

In this paper annotations and links were discussed
in the context of cooperative software development only.
Of course, these are very general devices that can solve
a variety of information management and
communication problems.

-5-

32 Policy-Driven Cooperation with Beyond-Sniff

Beyond-Sniff implements a conventional
configuration management approach, i.e., optimistic and
pessimistic coordination. There are two areas in which
Beyond-Sniff goes beyond conventional configuration
management. It supports optimistic coordination over
long distances and low bandwidths, and it provides
extensive support for merging parallel versions of entire
projects. A detailed discussion of the first topic goes
beyond the scope of this paper. The rest of this section
gives a brief overview on Beyond-Sniff's merging
support.

Projects define the level of granularity on which
developers are cooperating with Beyond-Sniff. A project
consists of all artifacts relevant to the development of a
software system. Projects have explicit representations
and can be structured in a tree of subprojects.

The merging of projects is a central task whenever
optimistic cooperation is employed. Beyond-Sniff's
TurboMixer provides support for comparing and merging
projects on a high level of abstraction. It visualizes
differences with colors and pictograms on project,
symbolic and textual levels and there are several
abstraction levels on which both symbolic and textual
differences can be browsed.

Figure 4 shows the TurboMixer in comparing three
consecutive versions of a project, ordered by age from
left to right. The structure of every working project is
visualized as a tree and the classes are listed above
them. New, changed, and deleted elements are
visualized the same way in the tree and in the list. The
semantics of the pictograms and colors is described in
the lower left corner.

3.3 Reated Work

In the area of CSCW, a large number of
synchronous approaches has been published, such as
synchronous editing of documents and video
conferencing. Except for the latter, none of them has
achieved a relevant level of practical application until
now. Dewan proposes in [7] to apply synchronous
approaches such as synchronous editing and debugging
to cooperative software engineering. This approach does
not address, however, the relevant problems of
cooperative software engineering as discussed in
Section 2.

Some programming environments such as Cadillac
[9] and Field [22] incorporate annotations, too. In
contrast to our approach their annotation concepts are
simplistic means for connecting some information with
source code. They are tool specific and cover only a
small part of the artifacts. Moreover, these environments
are aimed at single developers.

We do not know about tools similar to the
TurboMixer. Concepts building on the same basic idea
are also presented in a paper by Grass [11].

4 Realization of Beyond-Sniff

Beyond-Sniff consists of a set of cooperating tools
used by a set of developers running on a set of
workstations. The biggest challenge in implementing
such a distributed system is tool integration, i.e., the
integration of different kinds of tools and services in a
way that they work together as seamlessly as possible
(from the user's point of view). The field of tool
integration can be further divided into control, data, and
user interface integration (e.g., [24, 9]). Control and data
integration are discussed in this section.

T Source Editor: bech.proj — ClassBrowserapp.C (7] Symbol Browser: beb.proj
AW File Edit Positioning Utilities Make Info Class Exec Inspect Custom |4+ W Info Class Filter History
T T TN IT i s Symbuols of bech.proj

#include "BClassBrowser.h" Filterr *
#include "ClassBrowserdpp. h" IsEq] C
IsEq| Tvpe classes —
o1 - S ;
s Sy e LT BplassBrowser
Elclass SymtabTtem - i ToDo GlassBrowserhpp
i *ClassCatIten
public: Annotation|d: 136.0.2-14 Date 05.08.94 Public ||| classIten
Metalef (Symtab o MethodCGatItem
SymtahItem (int Priority I 3 +MethodIten ~
int ServerId() —
hool IsEqual(s Optinize memory management of class * EymtahIten |
char *Name () { SymtahIten.
char *Path() {
bool is0pen; Description
protected: —
int serverld; Projects
har + . F -
y chaL fname. Tp bch. proj A
’ = I B utils. proj
Newletalnpl(Symtab clisnts. proj
Revert | Save | stringmanager. proj
athrowser. proj

|‘-| | I PSR 11 memd 4
[T FReusahle Path: fhome/fantarktis/bischifbs/bch [= Reusahle J= Match whole Word

I I

Figure 3. Annotation aware Editor and SymbolBrowser with an annotation.

-6-

"=l

£ Project Merge Utilities

Project Merger

— féinalysed Source Projects

— Project

— Project

— Project

Name: clignts.atpro Name: clignts.atpro

Revised at: Fri Jul 29 15:5B8:37 1094

compared with: clients.atprof

Revised at: Fri Jul 29 15:5B8:40 1994

compared with: clients.atprof

Name: clignts.atpro
Revised at: Fri Jul 29 15:5B8:47 1094

compared with: clients.atproj

Changed Components Of Enabled Project:

Type: Class Type: Class

Changed Components Of Enabled Project:

Changed Components Of Enabled Project:

Type: Class

| - | Projectinfoservice <Services.h>

[-] FileinfoService <Services hx

[] AnyThingService <Services.h>

[-] ProjectService <Services.h>

[-] Userservice <Services.h>

[-] ToolService <Services b

[] DataDictionaryService <Services.h>
[-] symtabService <Services h>

[] EditorService <Services h>

[-] sniffservicez <Services.h>

Test <ServiceTesth>

| - | Editorservice <Services hz
[-] sniffService? <Services. h>
[*] anyThingService <Services.h>

stringColl <StringColls bz
Stringset <strinaColls.h>
OrdStringColl <StringColls.h>
MemElock <StringManager.h>
MemEBleckList <StringManager.h>
StringManager <stringManager h> 7

1|

|- | sortitermCemmand <anyThingBrowse
[-] cutitemComrmand <AnyThingBrowser
[-] PastelternCommand <AnyThingBrows
[] AnyThingErowseriew <&nyThingBrov
[+] AtFilteritemDialog <Filteritem C>

[] anyThingBrowseraccessor <AnyThingt
[+] PrefDialog canyThingBrowser.Cx

[-] AnyThingBrowser <anyThingBrowser.|
[-] ATlconMenuBar <AtlcenMenuBar h>
[£.] AtFilteritem <Filteritem h>

1|

o |

| |

| |

Projects: Projects:

Projects:

clignts.atpra) clignts.atpra)

[TH] atbrowser.atproj
[TH] stringmanager.atproj

clignts.atpra)

atbrowseratproj
stringmanager.atproj

Celors and Symbols For Object States
[-] unchanged [#] Created [Modifled [2] Deleted

Figure 4. TurboMixer visualizing differences in structure and classes.

41 Overview of Servicesand Applications

Beyond-Sniff consists of an extensible number of
services and tools. It is beyond the scope of this paper to
give a comprehensive overview of them. Figure 5
provides an architecture overview, which also shows
some of the important services and tools.

42 Control Integration

Scalability is a key property for the integration
mechanism of a platform that runs a large number of
services and tools. Beyond-Sniff achieves scalability by
using point to point communication for request
processing between clients and services, and multicasts
between services and their clients for notifying updates.
The efficiency of the communication between services
and applications is therefore independent of the number

Applications

of running clients and services.

Beyond-Sniff provides a configurable two-level
hierarchy of service brokers to connect clients with
services as depicted in Figure 6. The global service
broker directly connects clients and global infrastructure
services, which exist only once per installation (e.g., the
UserService). Otherwise it forwards the request to a
second-level service broker responsible for a certain
type of service (e.g., ProjectServices). A second-level
service broker knows all active services of a certain
type. Upon the receipt of arequest it checks whether the
requested service is already running and the service can
support a further client. Otherwise a new service is
started and connected.

A further degree of indirection has been
implemented to make it possible to replace some kind
of services without modifying the clients. In ordering a

Adm_il_rggltgation Sniff FileMerger
Message Bus SB?(r)\Qgre
Infrastructure DataDictionary Annotation & SymbolTable ProjectManage
Services ServiceDictionar Link Service Service Service
Services

Figure 5. Architecture overview.

-7-

service from the global service broker a prospective
client does not specify what kind of a service it needs
but it states functionality requirements. The global
service broker looks up which kind of service provides
the requested functionality before negotiating a
connection.

Service brokers are implemented based on a
specific framework. To implement a new service broker
it suffices to specify when a service can support a
further client, and how it is started.

ffffffffffffffffffff Global Service Broke—éerviceDiction@/

i Global SymbolTable ProjectManage!
| Infrastructure Service Broker Service Broker
1 Services

ProjectManage ¥ ia
Service

Service Broking ----
Service Usage ——

SymbolTable ll
Service

Figure 6. Service broker hierarchy.

4.3 Datalntegration

Data integration between services and applications
on the Beyond-Sniff platform is based on a federated
approach. There is no global data model, and every
service is responsible for the consistency of its own
information. All services use generic object graphs as
their external data representation. The data model of
each service is described by an object graph and
managed by the central DataDictionary. Beyond-Sniff
object graphs are language independent. They can be
represented simply and efficiently in different
programming languages.

The generic way to obtain information from a
service is to send it an OQL query [6]. The service
evaluates the query against its database and returns an
object graph as the result.

Every service defines it own data model, which can
be extended by clients. This is an important requirement
for generic services because it is usually impossible to
design a complete data model right from the beginning.
For example, it is impossible to know in advance all the
different kinds of information that tools want to store
about project artifacts. If this flexibility is missing
replication of functionality and data will result. This is
clearly undesirable.

Beyond-Sniff provides a framework which makes it
possible to implement new standard services with a
minimal effort. The framework comprises, among others,
the management of object graphs, the evaluation of
OQL queries, locking, recovery, and a standard update
interface. To implement an information service using an
object graph database it suffices to override the methods

for loading and storing the data, and to define the data
model.

44 Related Work

In comparing different approaches for the
integration of applications the relevant differences are
usually found in the way that control and data
integration are organized.

Message dispatchers (e.g., [21]) are today the most
widespread approach to control integration. The best
known of them, the HP-Softbench message dispatcher
[5], is amost a defacto industry standard. The basic idea
underlying the message dispatcher approach is that
services and applications communicate by sending
strings to each other. These strings are not transmitted
over a point-to-point connection but they are sent to the
message dispatcher which forwards them to interested
processes. Each process interested in a certain kind of
messages installs a pattern with the message dispatcher.
If a message matches a pattern it is forwarded to the
corresponding process.

This approach works well if a small number of tools
exchange a small number of messages from a
manageable number of types. It does not scale for two
reasons. The central message dispatcher becomes a
bottle neck, and the lack of explicit protocols makes it
difficult to determine the pattern to be installed to
receive a certain kind of messages (and only these).
Beyond-Sniff does not have scalability problems. Its
clients and services communicate over point-to-point
connections, and it provides a precise service broker
mechanism, as discussed in Section 4.2.

Currently many approaches to data integration are
under discussion. Certain research papers propose the
construction of a global data model which is mapped to
the local data models of the services (e.g., [23]). This
approach is conceptually attractive but it is unlikely that
it will be applicable on practical problems in the near
future. Another approach is to standardize data
integration. The most prominent standard is PCTE [25].
The basic idea underling PCTE is to store all relevant
information in one database with a unified data model.
This is only realistic for a relatively small percentage of
the information about a real world software system. For
this reason PCTE concentrates on storing information
about artifacts. The artifacts themselves are stored in the
file system and interpreted by the corresponding tools.
Implementations of PCTE such as Emeraude [8] are
commercially available and applied for real-world tool
integration.

PCTE takes a heavy-weight approach to data
integration and ensures data consistency to a large
degree. It provides only a part of Beyond-Sniff's
functionality. Services providing large amounts of
information such as the SymtabService are beyond the
scope of PCTE. PCTE and Beyond-Sniff therefore take
different approaches to data integration. PCTE is a
centralized approach focusing on consistency. Beyond-

-8-

Sniff is a federated system with emphasis on
lightweightness, extendibility and flexibility.

45 Stateand Further Proceeding

We implemented the first Beyond-Sniff prototype in
1992 to validate the feasibility of our approach. Based
on this experience we rewrote large parts of the
infrastructure, which is now mature enough that Beyond-
Sniff is used on one host by multiple developers
cooperatively. It is now used for its own evolution.

The next step is to replace the message bus to
make it possible to use Beyond-Sniff cooperatively on
several hosts. In parallel, the tools running on Beyond-
Sniff will be evolved.

While implementation of the support for
cooperation over large distances and low bandwidths has
not started yet, we implemented GTS [16], a generic
transport-layer-independent group-communication
mechanism.3 GTS guarantees the reliable exchange of
information between groups of sites. It is the technical
foundation on which we intend to realize the said
functionality.

5 Conclusions

Software systems are most often developed in
teams. Teamwork implies cooperation and therefore also
coordination needs. We identified two forms of
coordination, policy-driven and informal coordination.
Conventional configuration management addresses the
more obvious need for policy-driven coordination.
Pessimistic or optimistic approaches can be
distinguished. Informal coordination is neither addressed
in theory nor supported by tools in practice.

In a rather different area, CSCW investigates the
problem of computer supported cooperative work.
Combining ideas from both fields leads to a broadened
view that we call Cooperative Software Engineering
(CSE).

We are currently working on Beyond-Sniff, an
environment that focuses on cooperative software
engineering. Beyond-Sniff provides a number of tightly
integrated services and tools. Sniff, one of the tools, is
in widespread use today. The TurboMixer, another
example, is a novel approach to ease the burden of
comparing and merging large amounts of code.
Moreover, Beyond-Sniff provides the necessary
infrastructure to integrate services and tools on a large
scale. Our work is not finished yet, but we made some
important steps towards a future cooperative software
engineering environment.

6 References

1 Bischofberger WR: Sniff - A Pragmatic Approach to a
C++ Programming Environment. Procs. of the USENIX
C++ Conference, Portland, Oregon, Aug. 1992

3 GTswas developed in a cooperation between University of Zurich,
UBS/UBILAB, and Siemens Munich. The project was sponsored by
the Swiss Federal Commission for the Advancement of Scientific
Research (KWF).

2

14

17

24

Bischofberger WR, Pomberger G: Prototyping-Oriented
Software Development — Concepts and Tools. Springer-
Verlag 1992

Bischofberger WR, Kofler T, Schéffer B: Object-Oriented
Programming Environments: Requirements and
Approaches. Software — Concepts and Tools , Vol. 15 No.
2, Springer-Verlag, 1994

Booch G: Object-Oriented Analysis and Design with
Applications. Benjamin/Cunnings Publishing Company,
1994

Cagan MR: The HP Softbench Environment: An
Architecture for a New Generation of Software Tools;
Hewlett-Packard Journal, Vol. 41, No. 3, 1990

Cattell RGG (ed.): The Object Database Standard:
ODMG-93; Morgan Kaufman Publishers, 1994

Dewan P, Riedl J. Toward Computer Supported
Concurrent Software Engineering. IEEE Computer, January
1993

Emeraude: Emeraude V12 User Manual; 1991

Gabriel R. P. et a.: Foundation for a C++ Programming
Environment. Procs. of C++ at Work-90, Secaucus, New
Jersey, 1990

Goldberg A, Robson D: Smalltalk-80-The Language;
Addison-Wesley 1989

Grass JE: Cdiff: a Syntax Directed Differencer for C++
Programs. Procs. of the USENIX C++ Conference,
Portland, Oregon, Aug. 1992

Grudin J: CSCW: History and Focus; |EEE Computer, Vol.
27, No. 5, May 1994

Kaiser GE, Kaplan SM, Micaleff J; Multiuser, Distributed,
Language-Based Environments. |EEE Software, Vol. 4, No.
6, Nov. 1987

Kaiser GE, Popovich SS, Ben-Shaul 1Z: A Bi-Level
Language for Software Process Modeling. Procs. of the
15th ICSE, 1993

Madhavji NH: The Process Cycle. Software Engineering
Journal, September 1991

Maffeis S, Bischofberger WR, Maetzel KU: GTS: A
Generic Multicast Transport Service to Support
Disconnected Operation. Procs. of the 2nd USENIX
Symposium on Mobile and Location-Independent
Computing, Ann Arbor, M1, 1995

MaloneTW, Crowston K: The Interdisciplinary Study of
Coordination. ACM Computing Surveys, Vol. 26, No. 1,
March 1994

Olson GM, Olson JS: User-Centered Design of
Collaboration Technology. Journal of Organizational
Computing, Vol. 1, No. 1., 1991

Osterweil L: Software Processes are Software too. Procs.
of the 9th ICSE, 19987

Pomberger G, Blaschek G: Software Engineering —
Prototyping and Object Oriented Software Development.
Carl Hanser Verlag, 1993

Reiss SP: Connection Tools Using Message Passing in the
Filed Environment; |EEE Software, July 1990

Reiss SP: Interacting with the FIELD environment.
Software — Practice and Experience, Vol. 20, S1, 1990
Sarkar M, Reiss SP. A Data Model for Object-Oriented
Databases; Technical Report CS-92-56, Department of
Computer Science, Brown University, 1992

Schefstém D., van den Broek G.: Tool Integration—
Environments and Frameworks; John Wiley & Sons, 1993
Wakeman L, Jowett J; PCTE-The Standard for Open
Repositories. Prentice Hall, 1993

Ellis CA, Gibbs S, Rein GL: Groupware— Some Issues and
Experiences. CACM, Vol. 34, No. 1, January 1991

