
ab

Design and Implementation of
Smalltalk Mixin Classes

Bruno Sch�ffer

UbilabUbilab
Ubilab Technical Report 98.11.1



2  Design & Implementation of Smalltalk Mixin Classes

Ubilab

Ubilab is the information technology laboratory of UBS AG. It pursues a small number
of attractive, highly competitive research projects with the aim of maintaining the
status of a recognized research institution.

It is the task of Ubilab to actively assist UBS with its goal of becoming a leader in the
mastery of modern IT equipment, techniques, and methods. This task is pursued by
means of intimate involvement in application-oriented research and advanced devel-
opment projects. Furthermore, UBS contributes to fostering the interaction between IT
research and application, that is between academia in its search for new methods, and
business in its application of them. To this purpose Ubilab cooperates with universities
and other research institutions on a worldwide basis. The goal is to expand the scope of
the Laboratory by carrying out common projects, thus guaranteeing—provided top-
notch partners are found—the quality of the research. The impact of Ubilab is therefore
focussed on both the IT departments of UBS AG and the IT research community at
large.

For further information about Ubilab, staff, projects, or publications see our World
Wide Web (WWW) pages. Feel free to contact the staff personally via e-mail or to write
to the mailing address given below.

Location of Ubilab

Universitätsstrasse 84
CH-8033 Zurich
Switzerland

Mailing address

UBS AG, Ubilab
Postfach
CH-8098 Zurich

Electronic access

Phone: ++41 1 236 57 14
Fax: ++41 1 236 46 71
E-mail: firstname.lastname@ubs.com
WWW: http://www.ubs.com/ubilab



Table of Contents

1 Introduction ................................................................................................. 4

2 Smalltalk as a reflective environment ............................................................. 4

3 Mixin classes................................................................................................. 5

3.1 Definition.................................................................................................................................. 5
3.2 Application of mixin classes ................................................................................................ 5

3.2.1 Class libraries................................................................................................................................. 5
3.2.2 The Tools and Materials Metaphor ......................................................................................... 5

3.3 Mixin classes using state ....................................................................................................... 5
3.4 Shortcomings ........................................................................................................................... 6
3.5 Implementations of mixin classes...................................................................................... 6

3.5.1 C++ ................................................................................................................................................... 6
3.5.2 Java ................................................................................................................................................... 6
3.5.3 CLOS ................................................................................................................................................ 6

4 Mixin classes in Smalltalk.............................................................................. 6

4.1 Rationale.................................................................................................................................... 6
4.2 Design......................................................................................................................................... 7
4.3 Implementation.....................................................................................................................10

4.3.1 BaseObject ....................................................................................................................................10
4.3.2 MetaBaseclass ..............................................................................................................................11
4.3.3 Protocol .........................................................................................................................................13
4.3.4 BaseclassBuilder ..........................................................................................................................13
4.3.5 Infrastructure...............................................................................................................................14

4.3.5.1 Class ..........................................................................................................................................14
4.3.5.2 ClassDescription ....................................................................................................................15
4.3.5.3 Behavior ...................................................................................................................................16
4.3.5.4 ClassBuilder.............................................................................................................................16
4.3.5.5 Metaclass..................................................................................................................................16
4.3.5.6 SystemDictionary ..................................................................................................................17
4.3.5.7 Browser.....................................................................................................................................17

5 Conclusion ................................................................................................. 20

6 Literature.................................................................................................... 20

7 Source Code ................................................................................................ 22

7.1 BaseObject...............................................................................................................................22
7.2 Protocol....................................................................................................................................22
7.3 MetaBaseclass .........................................................................................................................22
7.4 BaseclassBuilder .....................................................................................................................24
7.5 Class ..........................................................................................................................................26
7.6 ClassDescription....................................................................................................................27
7.7 Behavior...................................................................................................................................28
7.8 Metaclass..................................................................................................................................28
7.9 ClassBuilder ............................................................................................................................29
7.10 SystemDictionary ..................................................................................................................29
7.11 Browser.....................................................................................................................................29



4  Design & Implementation of Smalltalk Mixin Classes

1 Introduction
Inheritance allows to define new classes based on already existing ones. A derived class
usually spezializes state and behavior of a class. Common state and behavior can be
generalized in a common base class. If a class can be derived from a single class only we
call it single inheritance. In contrast, multiple inheritance combines the state and be-
havior of two or more classes.

Smalltalk as a language supports only single inheritance. The first implementations of
Smalltalk-80 [Gold89] supported multiple inheritance too. However, the class library
never made use of this feature and it was removed there after.

Multiple inheritance gained popularity in the second half of the eighties through lan-
guages like C++ [Str91] or Eiffel [Mey88]. Subsequently, the design and implementation
of class libraries and frameworks like CommonPoint [Cot95] or PowerPlant [Met96]
made use of it.

It was also realized that multiple inheritance incorporates a lot of semantics and its im-
plementation is tricky. Moreover, its application has serious consequences to the struc-
ture of a class library. With single inheritance the inheritance graph is a tree, whereas
with multiple inheritance it is an arbitrary graph. In most cases the design of a class hi-
erarchy based on multiple inheritance is more difficult rather than easier. It also makes
a class library much harder to understand. Furthermore, designers tend to mix together
classes where no semantic heritage is present. Multiple inheritance also seduces to ne-
glect or postpone redesign of the class hierarchy.

Inexperienced designers often use multiple inheritance when they should use composi-
tion. Composition is much cheaper in terms of semantics and more flexible, because it
can be configured at run-time. Inheritance is mostly static and effects all instances at
once.

In most cases designers just want to provide additional functionality in a class. Since
most classes define behavior as well as state, this state is inherited too. This leads to
problems where a class is multiply inherited from along the class hierarchy. The state of
this class is now repeatedly realized. This might be intended in certain cases, whereas
usually the state of the base class is to be shared. Therefore in C++ the designer of a class
has to decide, whether the state of a base class may be repeated in a derived class or not.
However, it is always questionable if a designer has to foresee all possible uses a class.
This contradicts to the principle of object-oriented programming to postpone decisions
as long as possible, preferably until run-time.

2 Smalltalk as a reflective environment
Smalltalk is based on a fully reflective architecture. A reflective architecture is one in
which a process can access and manipulate a full, explicit, and causally connected rep-
resentation of its own state. “Causally connected” means that any changes made to a
process’ self-representation are immediately reflected in its actual state and behavior
(see [Mae87], [Foo89]).

In Smalltalk, all information about the system is available at run-time:

•  Metaclasses describe all classes, their state, behavior, inheritance relationship etc.

•  Code is available in its source form and in its compiled form (byte code)

This meta information can be manipulated at run-time and in fact is done while devel-
oping with Smalltalk.



Design & Implementation of Smalltalk Mixin Classes  5

3 Mixin classes

3.1 Definition

It was soon realized that unlimited multiple inheritance introduces more problems than
it tries to solves. Since in most cases it was intended to inherit behavior only, a re-
stricted form of multiple inheritance, namely mixin-classes was coined [Bra90]. Mixin-
classes are usually abstract and do not define any state. They only serve to declare (and
sometimes define) a certain behavior through a set of methods. Classes that need to of-
fer this behavior have to inherit from this mixin-class. This leads to two different kinds
of classes:

•  Base classes: they can define state and behavior

•  Mixin classes: they can only define behavior

A class can only inherit from one primary base class and mix in any number of mixin-
classes.

3.2 Application of mixin classes

3.2.1 Class libraries

A single rooted class library defines common behavior for all its classes in its root class,
usually called Object. Examples of this behavior are printing, comparing, testing, copy-
ing, dependencies etc.

In statically typed languages it is necessary to declare this behavior already in the root
class for compatibility reasons. However, class library designers are now in a dilemma.
On the one hand they try to specify as much common behavior as possible in the root
class. This increases the reusability of the root class and of classes that make use of this
behavior. On the other hand the root class becomes too “heavy” and inheritors of the
root class cannot choose the behavior on their own. Moreover, derived classes have to
override methods they do not want to provide.

Mixin classes can provide a smaller granularity inheritors can choose from. For example
not every class needs a printing  or dependency behavior, so this can be mixed in in
classes which need it.

Classes or methods requiring a certain behavior can be more specific in the interface by
stating the necessary behavior through mixin classes. For example, a class SortedCollec-
tion demands a comparing behavior from the objects added to it. Requiring a compar-
ing protocol, which is already defined as a mixin class, is much more descriptive than
demanding a set methods like #=, #< etc.

3.2.2 The Tools and Materials Metaphor

A typical application of mixin-classes is the tools-materials metaphor (see [Bür95],
[Rie95]). This metaphor presents a guideline, how to view and analyze the world and
also how to derive a design. The domain of the tools-materials metaphor is the work-
place of a skilled worker. His/her world is separated into tools and materials. A task is
carried out by applying a tool to a material. A typical example from the banking do-
main is a form sheet as a material and a specialized calculator as a tool. In order to be
worked on with a tool, a material has to provide a certain behavior. This behavior is
called an aspect and is usually being defined using a mixin-class.

3.3 Mixin classes using state

It is not always convenient to provide an implementation of a mixin-class without any
state. A mixin-class that tries to postpone any state to its implementor is sometimes too
abstract and requires a lot of implementation effort by its client. This can be circum-
vented by declaring abstract methods for accessing state. A class inheriting from this
mixin class has to realize the state and has to override those abstract accessor methods.



6  Design & Implementation of Smalltalk Mixin Classes

The designer of a mixin class always has to make a compromise between abstraction
and implementation. If a mixin class is too abstract, it requires too much effort by its
users in terms of implementation. On the other hand, an implementation usually re-
stricts the usability of a mixin class, although an implementation can be adapted by
overriding certain methods.

3.4 Shortcomings

Inheritance is mostly a static relationship, even in dynamic environments like Small-
talk. Therefore mixin classes are not suited when a combination of properties has to be
dynamic and on a per-instance basis. In this case composition  is clearly prefered to in-
heritance.

With regard to design patterns E. Gamma et al. [Gam95] describe two applications of
multiple inheritance, namely Bridge and Adapter. In both cases the implementations
lose flexibility if they are based on multiple inheritance rather than composition.

3.5 Implementations of mixin classes

3.5.1 C++

Mixin classes can be easily defined in C++ [Str91]. They are just classes without any in-
stance variables. Such a class need not be virtual and therefore avoids a sequence of
problems with virtual base classes (e. g. ambiguities, casting, breaking encapsulation,
hardly understandable etc.)

Taligent published a comprehensive guide [Tal94] for developing large object-oriented
software using C++. In this guide they distinguish between two categories of classes,
base classes and mixin classes. Base classes represent fundamental functional objects,
and mixin classes represent optional functionality. A class may inherit from zero or one
base classes, plus zero or more mixin classes. A class that inherits from a base class is it-
self a base class. Adhering to these guidelines helps to avoid virtual base class problems
and makes a class hierarchy much more comprehensible.

3.5.2 Java

Java [Arn96] supports interfaces which are basically mixin classes. However, Java inter-
faces declare just an interface, but cannot provide an implementation, be it abstract or
not. The implementation has to be completely realized in the class supporting an inter-
face.

3.5.3 CLOS

CLOS [Bob88] provides rich mechanisms for multiple inheritance. Any number of
classes can be combined to build a new class. Hence, mixin classes can be simulated as
well.

CLOS linearizes the class hierarchy in order to resolve ambiguities, which makes com-
plex class hierarchies even less comprehensible. Moreover, slight changes to the class
hierarchy can result in completely different behavior.

4 Mixin classes in Smalltalk

4.1 Rationale

Smalltalk has true dynamic binding. At compile time the compiler does not (and can-
not) check whether an object will understand a message. This is done exclusively at run-
time. Therefore two objects need not be derived from a common base class in order to
be compatible. They just have to be able to respond to the same set of messages. Small-
talk has the convention of grouping together related methods in a protocol or method
category. This is not a language feature but just a means of organizing the behavior of a



Design & Implementation of Smalltalk Mixin Classes  7

class. Tools like the system browser make use of method categories to provide a better
overview of the functionality of a class.

As a consequence people tend to copy methods in Smalltalk rather than deriving classes
from a common (abstract) base class. One can often find implementation inheritance
rather than interface inheritance. This leads to confusing class hierarchies since inheri-
tance does not determine compatibility alone. Moreover, copying methods or pieces of
it contradicts factorization and results in unmaintainable code. For example, the com-
paring protocol is declared in the class Magnitude. If a class needs a comparing behavior
one has either to derive it from Magnitude and override #<, #= and #hash or copy all
methods from Magnitude into the new class and implement #<, #= and #hash. Both al-
ternatives are undesirable, the first one leads to strange class hierarchies, the second one
to hardly maintainable code.

Mixin classes help to factorize common behavior on a finer granularity. This way be-
havior is explicitly stated in a class. However, classes do not have to be derived from
this class but need only to mixin this behavior.

Subsequently, we use both the terms “mixin class” and “protocol class”  for such a class.

4.2 Design

Enhancing Smalltalk with mixin-classes was done on three levels:

•  Two new classes, namely BaseObject and Protocol, are provided. Mixin classes have
to be derived directly or indirectly from Protocol. Classes that make use of mixin
classes must have BaseObject as a direct or indirect base class.

•  A new metaclass, MetaBaseclass, was introduced. The metaclasses of classes derived
from BaseObject are instances of MetaBaseclass. Creating or changing a class in
Smalltalk is a relatively complicated process. In order to encapsulate this process and
to make it as atomic as possible Smalltalk provides a class ClassBuilder. Accordingly,
for BaseObject classes there is now a class BaseclassBuilder.

•  Small changes and a few additions to the existing Smalltalk infrastructure were nec-
essary.

The key to changing the message lookup in Smalltalk is the method #doesNotUnder-
stand. However, it only allows to adapt the method lookup after a requested method
could not be found. BaseObject overrides #doesNotUnderstand such that it tries to find a
corresponding method in the mixin classes.  This search is performed in a depth first
manner:

•  The search is first performed along the primary base hierarchy (through the normal
method lookup process).

•  The search continues in the protocol classes of the receiver. Each protocol class is
searched up to Protocol (actually up to Object, but any method in Object would
have been found along the primary base hierarchy anyway).

•  The search in the protocol classes is repeated along the primary base hierarchy up to
BaseObject.

If an appropriate method can be found it is executed, otherwise
Object>>#doesNotUnderstand is called.

Introducing a new metaclass was not the only possible solution. One could have im-
plemented the required state and behavior as class (instance) variables resp. methods.
The metaclass solution is cleaner since it keeps metaclass responsibilities off BaseObject.



8  Design & Implementation of Smalltalk Mixin Classes

Fig. 1 Relationships between classes, metaclasses, base, and protocol classes ([Gold89])

One of the design goals was to keep the changes to the VisualWorks system minimal.
This eases portability and adaption to new versions of VisualWorks. The ideal solution
would have been to derive a class BaseClass from Class. All changes to Behavior, Class-
Description, and Class could have been implemented in BaseClass. However, this was
not possible since the method lookup of a class method in Object continues in the in-
stance methods of Class, but should have continued in BaseClass. All methods in Base-
Class would have to determine whether the receiver is derived from BaseObject or from
Object in order to provide the appropriate behavior. Hence it was decided to change a
few (3 methods) in Behavior, ClassDescription, and Class. Moreover, two methods were
added to Class, namely #subclass:protocol:instanceVariableNames: classVariableNames:
poolDictionaries:category: and #subprotocol:category:. These methods are required in or-
der to create new classes derived from BaseObject resp. Protocol.

A new class using mixin classes is defined as follows:

BaseObject subclass: #Customer
protocol: 'Comparing Printing'
instanceVariableNames: 'id firstName lastname address'
classVariableNames: ''
poolDictionaries: ''
category: 'Example'

A new class using mixin classes is defined as follows:

Protocol subprotocol: #Comparing
category: 'Common Protocols'

Apart from the metaclasses the programming tools had to be adapted as well. The user
now has additional menu entries in the class list to select different class definition tem-
plates. The editor is state based and therefore it was also necessary to introduce addi-
tional states (and methods) for the new class definitions.

Metaclass Hierarchy
Class Hierarchy
Instance Relation

Mixin Relation

Object

Object
class

ClassDescription

ClassDescription
class

Behaviour

Behaviour
class

Class

Class
class

Metaclass

Metaclass
class

Material
class

Form
class

MaterialForm

BaseObject
class

BaseObject

MetaBaseclass

MetaBaseclass
class

Protocol
class

Printing
class

Protocol Printing



Design & Implementation of Smalltalk Mixin Classes  9

Fig. 2  Additional entries in class list menu

The class BaseclassBuilder is derived from ClassBuilder and implements additional plau-
sibility checking if the class to be built or changed is derived from BaseObject. Base-
classBuilder checks whether:

•  A class using mixin classes is derived directly or indirectly from BaseObject.

•  The direct or indirect base class of a mixin class is Protocol.

•  Protocol classes do not occur multiply in a class definition.

•  All protocols in a class definition are indeed classes.

•  Protocol classes do not have instance variables.

Classes can be freely moved from the Object hierarchy to the BaseObject hierarchy and
back. If a class is moved off the BaseObject hierarchy its metaclass (and all metaclasses
of its direct or indirect subclasses) must be changed to instances of Metaclass. Accord-
ingly metaclasses have to become instances of MetaBaseclass if their classes are moved
to the BaseObject hierarchy.

Therefore it was necessary to add this functionality to ClassBuilder, BaseclassBuilder,
Metaclass, and MetaBaseclass. If a class is modified the class builder checks whether the
metaclass has to be changed as well and performs it.

The lookup of a protocol method is expensive in terms of run-time. Therefore, once a
protocol method is found, it is cached in the method dictionary of the receiver. The
compiled method is copied, its receiver class is changed to that of the receiver and it is



10  Design & Implementation of Smalltalk Mixin Classes

added to the method dictionary of the receiver. Consequently, with a number of
changes to the system these method caches must be flushed:

•  The implementation of a protocol method is changed (either in a mixin class or in a
primary base class).

•  The inheritance hierarchy below BaseObject or Protocol is changed.

•  The number or sequence of mixin classes is changed.

Flushing the method caches is done selectively. In most cases only methods that might
be invalid are removed.

If a method is only added to the method dictionary, but not entered into the class or-
ganization it remains invisible in all development tools. This is exactly the intended
behavior, since a protocol method should be excusively visible in the protocol class.

An IBM/VisualAge prototype of the mixin classes proved that this optimization can be
ported with little effort.

4.3 Implementation

This chapter describes the four new classes BaseObject, Protocol, MetaBaseclass, and
BaseclassBuilder and their most important methods.

4.3.1 BaseObject

The class BaseObject is the base class of all classes  that use mixin classes. BaseObject
itself is not considered as a primary base class and therefore its metaclass is an instance
of Metaclass rather than MetaBaseclass.

Object subclass: #BaseObject
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Mixins'

BaseObject only overrides #doesNotUnderstand. First it tries to figure out whether the
send was caused by a super send or not. This is done by inspecting the byte code of the
calling method. In order to get the context of the caller, a full block is created and this
blocks builds the starting point for searching the context chain backwards. Based on
these findings #doesNotUnderstand searches for the requested method in the protocol
classes starting with this class or its superclass. If the method is found a copy of it is in-
stalled in the method dictionary of the first protocol supporting class up the hierarchy
and the message send is restarted. Otherwise Object>>#doesNotUnderstand is called.

doesNotUnderstand: aMessage
"Method could not be found. Try to find method in protocol classes, copy it,
install it in the first supporter's method dictionary and send the message again.
Treat super send differently by starting search in superclass"

| method block t1 t2 byte sendContext metaclass firstSupporter |
block := [t1 := t2].
sendContext := block outerContext sender.
byte := sendContext method byteAt: sendContext pc - 2.
metaclass := self class class.
byte == 242 ifTrue: [metaclass := metaclass superclass].
MethodDictionary keyNotFoundSignal

handle: [:ex | method := nil]
do: [method := metaclass compiledMethodAt: aMessage selector].

method == nil
ifTrue: [super doesNotUnderstand: aMessage]
ifFalse: [method := method copy].

firstSupporter := metaclass firstProtocolSupporter: method mclass.
method mclass: firstSupporter.
firstSupporter addSelector: aMessage selector withMethod: method.
^method valueWithReceiver: self arguments: aMessage arguments



Design & Implementation of Smalltalk Mixin Classes  11

4.3.2 MetaBaseclass

All metaclasses of classes derived from BaseObject are instances of MetaBaseclass. This
class enhances the metaclass system of Smalltalk with mixin classes. MetaBaseclass
comprises:

•  Creation of classes derived from BaseObject.

•  Management of meta information and providing access to it.

•  Converting an instance of MetaBaseclass into one of Metaclass.

•  Infrastructure support for browsing tools.

Metaclass subclass: #MetaBaseclass
instanceVariableNames: 'protocol '
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Mixins'

The instance variable protocol contains an OrderedCollection with the names of all
supported mixin classes.

The method #canUnderstand: is called by Behavior>>#canUnderstand:. If a method is not
found in the primary base hierarchy, the search is continued along the protocol hierar-
chies.

canUnderstand: selector
"Answer true if one of the receivers protocol classes can respond to the message
whose selector is the argument"

protocol do: [:each | ((Smalltalk at:each) canUnderstand: selector) ifTrue: [^true]].
^false

If a method cannot be found, #compiledMethodAt: tries to find the method in the pro-
tocol classes and returns it. This method is called by BaseObject>>#doesNotUnderstand.

compiledMethodAt: aSelector
"return compiled method; search depth first"

| protocolClass |
protocol do: [:each | (protocolClass := (Smalltalk at: each)

whichClassIncludesSelector: aSelector) ~~ nil ifTrue: [^protocolClass compiledMethodAt:
aSelector]].

superclass ~~ BaseObject class ifTrue: [^superclass compiledMethodAt: aSelector].
^nil

The method #flushMethodCache removes all protocol methods from primary base class
method dictionaries. A method can be flushed if it is in the method dictionary, but not
in the class organization.

flushMethodCache
"flush method caches of this class and its subclasses"

((thisClass allSubclasses) add: thisClass; yourself) do: [:each | each selectors do: [:eachSelector | (each
organization includesElement: eachSelector)

ifFalse: [each removeSelector: eachSelector]]]

The method #supportsProtocol returns true, if aProtocol is supported by a class. A proto-
col is also supported by mixing in a protocol derived from it.

supportsProtocol: aProtocol
"Check whether receiver´s instance supports a protocol:
- aProtocol is listed in protocol
- aProtocol is a baseprotocol of one of the protocols in protocol"

(protocol includes: aProtocol printString)
ifTrue: [^true].

protocol do: [:each | ((Smalltalk at: each asSymbol)
inheritsFrom: (aProtocol))



12  Design & Implementation of Smalltalk Mixin Classes

ifTrue: [^true]].
superclass ~~BaseObject class ifTrue: [^superclass supportsProtocol: aProtocol].

Starting with thisClass the method #firstProtocolSupporter returns the first class up the
hierarchy that supports aProtocol. This method is needed to find the appropriate class
for installing a protocol method into the method dictionary of a base class.

firstProtocolSupporter: aProtocol
"starting with thisClass return the first class up the hierarchy supporting
aProtocol"

| classProtocol |
thisClass withAllSuperclasses do: [:eachClass | eachClass ~~ BaseObject

ifTrue:
[classProtocol := eachClass class protocol.
(classProtocol includes: aProtocol printString)

ifTrue: [^eachClass].
classProtocol do: [:each | ((Smalltalk at: each asSymbol)

inheritsFrom: aProtocol)
ifTrue: [^eachClass]]]

ifFalse: [^nil]]

With the deletion of a mixin class it must be removed from all primary base classes
supporting it. This is done by calling the method #removeProtocol:.

removeProtocol: aProtocol
"remove a Protocol
- flush relevant method caches
- remove protocol from supporting classes"

| aProtocolName |
aProtocolName := aProtocol printString.
(aProtocol inheritsFrom: Protocol)

ifTrue: [BaseObject allSubclassesDo: [:each | (each class protocol includes: aProtocolName)
ifTrue:

[each class flushMethodCache.
each class protocol remove: aProtocolName]]]

Four methods provide the infrastructure for converting instances of Metaclass to in-
stances of MetaBaseclass and back.

•  The method #converter returns a symbol (#asMetaclass or #asMetaBaseclass) defining
the method that has to be called in order to get a copy of a metaclass. This copy is
now an instance of the receiver of #converter.

•  The methods #asMetaclass and #asMetaBaseclass return a copy of a metaclass whose
class is the specified metaclass.

•  All instance variables of a metaclass are copied to the new metaclass by using
#copyFrom:.

converter
"Return message that has to be executed if self has to be converted"

^#asMetaBaseclass

copyFrom: aMetaclass
"copy all instance variables from aMetaclass into self"

super copyFrom: aMetaclass.
aMetaclass class == self class

ifTrue: [protocol := aMetaclass protocol]
ifFalse: [protocol := OrderedCollection new]

asMetaclass
"return an copy of self but as an instance of Metaclass "

| newMeta |
newMeta := Metaclass new.
newMeta copyFrom: self.



Design & Implementation of Smalltalk Mixin Classes  13

^newMeta

asMetaBaseclass
"return self since it is already an instance of MetaBaseclass "

^self

4.3.3 Protocol

The class Protocol is just a convention. In order to identify a mixin class it must be de-
rived from Protocol. Protocol and its subclasses must not have instances and instance
variables.

Object subclass: #Protocol
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Mixins'

Protocol overrides #new and #new:. Both methods raise an error if one tries to create an
instance of Protocol.

4.3.4 BaseclassBuilder

The class BaseclassBuilder is derived from ClassBuilder. Since ClassBuilder was not de-
signed for reuse, some methods had to be copied to BaseclassBuilder and adapted there.
Examples are #createNewSubclass or #modifyExistingClass.

An important part of functionality of BaseclassBuilder is the validation of a new or
changed class prior to changing the system. For primary base classe these checks are per-
formed in #validateProtocol and #validateBaseObject.

ClassBuilder subclass: #BaseclassBuilder
instanceVariableNames: 'protocol '
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Mixins'

The instance variable protocol holds an array of protocol strings.

The method changeMicroState was copied from ClassBuilder. Prior to recompiling all
methods the class’s protocol is updated. (Those parts of a method which were changed
are emphasized by a dotted underline.)

changeMicroState
"Change those aspects of the class that are relatively independent
of any other changes to the class"

self changeCategory.
self changeClassVariables.
self changePools.
self sanityCheck: class.
   self currentClass class protocol: self protocol.
recompile ifTrue:

[class withAllSubclasses
do: [:cls |

Transcript show: cls name, ' recompiling...'.
cls rebindAllMethods.
Transcript show: 'done'; cr]]

The method #createNewSubclass first creates a new meta class (= instance of MetaBase-
class). Additionally to ClassBuilder>>#createNewSubclass it sets the protocol of the meta
class according to the class definition.

createNewSubclass
"The class does not exist--create a new class-metaclass pair"

| newMeta |
self runValidationChecksForNewClass.



14  Design & Implementation of Smalltalk Mixin Classes

newMeta := self metaclassClass new.
newMeta assignSuperclass: (self classOf: superclass).
newMeta methodDictionary: MethodDictionary new.
newMeta setInstanceFormat: (self classOf: superclass) format.
    newMeta protocol: self protocol.
class := newMeta new.
class assignSuperclass: superclass.
class methodDictionary: MethodDictionary new.
class setInstanceFormat: self computeFormat.
self setStructureOf: class.
class setName: className.
self register: class inPlaceOf: nil.
self changeMicroState.
^self logNew: class

The method #modifyExistingClass mutates the metaclass if necessary. Additionally, it has
to flush all method caches

•  of primary base classes that support this protocol or a derived protocol if the class is
a protocol class;

•  of this class and all its derived classes if the class is derived from BaseObject;

modifyExistingClass
"Enumerate the legal types of changes and perform them.  If a new
class was created, the final check for which kind of mutation is
skipped, since a new class needs no mutation"

self runValidationChecks.
   self adaptMetaclass.
   self flushMethodCache: class.
self needsMutation

ifTrue: [self doMutationInPlace
ifTrue: [self mutateCurrentClass]
ifFalse: [self mutateToNewClass]].

self changeMicroState.
^self logChanged: self currentClass

4.3.5 Infrastructure

The meta-level system of Smalltalk and its infrastructure (e. g. Browsers) are hardly de-
signed for reuse. No wonder, they have never been reused so far apart from prototypes
or experiments. Reusing a system not designed for reuse usually results in changing ex-
isting code (e. g. introducing case-like structures) or copying code. Nevertheless, one of
the design goals was to make as few changes as possible to the system.

Some of the changes were realized in MetaBaseclass and BaseclassBuilder. Overriding
was done by copying the appropriate code and inserting the changes. Despite of that, a
few methods had to be changed in place (10 methods in Class, ClassDescription, Be-
havior, Browser, ClassBuilder and SystemDictionary) and some were added (10 methods
in Class, Metaclass and Browser).

One alternative would have been to redesign and reimplement the meta-level system of
Smalltalk. This certainly is a hairy and daunting task. Moreover, every new release of
VisualWorks would have required a major effort to reintroduce these changes. It also
would be much more difficult to port the mixin classes to other Smalltalk implementa-
tions like VisualAge, where the meta-level system is similar to VisualWorks.

4.3.5.1 Class

The class Class is responsible for class creation. Two new methods had to be added:

•  subclass:protocol:instanceVariableNames:classVariableNames:poolDictionaries:category:
Create an new class with mixing in protocol classes.

•  subprotocol:category:
Create a new subprotocol.



Design & Implementation of Smalltalk Mixin Classes  15

The method subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:
was changed in order to create the appropriate class if the base class is derived from
BaseObject.

subclass: t instanceVariableNames: f classVariableNames: d poolDictionaries: s category: cat
"This is the standard initialization message for creating a new class as a subclass
of an existing class (the receiver)."

| approved |
approved := SystemUtils

validateClassName: t
confirm: [:msg :nm | Dialog confirm: msg]
warn: [:msg | Dialog warn: msg].

approved == nil ifTrue: [^nil].
   (self inheritsFrom: BaseObject)

  ifTrue: [^self
   subclass: t
    protocol: ''
  instanceVariableNames: f
   classVariableNames: d
    poolDictionaries: s
   category: cat].

^(self classBuilder) superclass: self; environment: self environment; className: approved; instVarString:
f; classVarString: d; poolString: (self computeFullPoolString: s); category: cat; beFixed; reviseSystem

4.3.5.2 ClassDescription

The class ClassDescription is, among others, responsible for the class organisation and
for the definition message of a class. The two new definition messages, as implemented
in Class, were added.

definitionMessage
"Answer a MessageSend that defines the receiver."

| selector isProtocol   isBaseObject    args |
  isBaseObject := self inheritsFrom: BaseObject.
  isProtocol := self inheritsFrom: Protocol.
isBaseObject ifTrue: [selector :=    
         #subclass:protocol:instanceVariableNames:classVariableNames:poolDictionaries:category:].
  isProtocol ifTrue: [selector := #subprotocol:category:].
  isProtocol | isBaseObject ifFalse:    [selector := self isVariable

ifTrue: [self isBits
ifTrue: 

[#variableByteSubclass:instanceVariableNames:classVariableNames:poolDictionaries:category
:]
ifFalse: [#variableSub-

class:instanceVariableNames:classVariableNames:poolDictionaries:category:]]
ifFalse: [#subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:]].

  isBaseObject ifTrue: [args := (Array new: 5)
   at: 1 put: self name;
   at: 2 put: self class protocolString;
   at: 3 put: self instanceVariablesString;
   at: 4 put: self classVariablesString;
   at: 5 put: self sharedPoolsString; yourself].

  isProtocol ifTrue: [args := Array with: self name].
  isProtocol | isBaseObject ifFalse:    [args := Array

with: self name
with: self instanceVariablesString
with: self classVariablesString
with: self sharedPoolsString].

^MessageSend
receiver: superclass
selector: selector
arguments: (args copyWith: self category asString)



16  Design & Implementation of Smalltalk Mixin Classes

4.3.5.3 Behavior

The class Behavior provides the minimum state and behavior for objects that can create
instances. A crucial method is #canUnderstand, which returns true if instances of this
class can respond to a given selector. This behavior had to be changed for mixin classes,
since a method could also be defined in a protocol.

canUnderstand: selector
"Answer true if the receiver can respond to the message whose selector
is the argument, false otherwise.  The selector can be in the method dictionary
of the receiver's class, any of its superclasses, or in its protocol classes"

(self includesSelector: selector) ifTrue: [^true].
   superclass notNil ifTrue: [(superclass canUnderstand: selector) ifTrue: [^true]].
   (self class isMemberOf: MetaBaseclass) ifTrue: [^self class canUnderstand: selector].
    ^false

4.3.5.4 ClassBuilder

Prior to modifying a class ClassBuilder has to check whether the class is moved off the
BaseObject hierarchy or into it. The method #adaptMetaclass compares the metaclasses
of the class to be changed and its potentially new superclass and triggers the mutation
of the metaclass if they are not equal.

modifyExistingClass
"Enumerate the legal types of changes and perform them.  If a new
class was created, the final check for which kind of mutation is
skipped, since a new class needs no mutation"

self runValidationChecks.
self adaptMetaclass.
self needsMutation

ifTrue: [self doMutationInPlace
ifTrue: [self mutateCurrentClass]
ifFalse: [self mutateToNewClass]].

self changeMicroState.
^self logChanged: self currentClass

adaptMetaclass
"if class changes from the Object hierarchy to the BaseObject hierarchy or vice versa, mutate its 
metaclass"

|  converter selfBase superBase |
selfBase := self currentClass inheritsFrom: BaseObject.
superBase := (self superclass inheritsFrom: BaseObject) or: [self superclass == BaseObject].
converter := self superclass class converter.
(selfBase xor: superBase) ifTrue:

[self currentClass withAllSubclasses do:
[:eachClass | eachClass class become: (eachClass class perform: converter)]]

4.3.5.5 Metaclass

Mutating a metaclass necessitates four additional methods in Metaclass. All four meth-
ods are overridden in MetaBaseclass.

•  The method #converter returns a symbol (#asMetaclass or #asMetaBaseclass) defining
the method that has to be called in order to get a copy of a metaclass. This copy is
now an instance of the receiver of #converter.

•  The methods #asMetaclass and #asMetaBaseclass return a copy of a metaclass whose
class is the specified metaclass.

•  All instance variables of a metaclass are copied to the new metaclass by using #copy-
From:.



Design & Implementation of Smalltalk Mixin Classes  17

The class BaseObject is an exception. Its metaclass is an instance of Metaclass, never-
theless it is treated like a protocol class.

converter
"Return message that has to be executed if self has to be converted"

thisClass == BaseObject
ifTrue: [^#asMetaBaseclass]
ifFalse: [^#asMetaclass]

copyFrom: aMetaclass
"copy all instance variables from aMetaclass into self"

superclass := aMetaclass superclass.
methodDict := aMetaclass getMethodDictionary.
format := aMetaclass format.
subclasses := aMetaclass getSubclasses.
instanceVariables := aMetaclass instVarNames.
organization := aMetaclass organization.
thisClass := aMetaclass soleInstance.

asMetaclass
"return self since it is already an instance of MetaBaseclass "

^self

asMetaBaseclass
"return an copy of self but as an instance of MetaBaseclass "

| newMeta |
newMeta := MetaBaseclass new.
newMeta copyFrom: self.
^newMeta

4.3.5.6 SystemDictionary

The class SystemDictionary has only one instance, named Smalltalk and holds most in-
formation about the structure of the system. Removing a class from the system is pro-
cessed by SystemDictionary. Removing a protocol class causes flushing all correspond-
ing method caches and removing the protocol from the metaclasses.

removeClassNamed: className
"Remove the class with the name className, and all of its subclasses,
from the system, and note the removal in the system ChangeSet."

| class |
class := self at: className asSymbol ifAbsent: [^self].
"remove subclasses first"
class subclasses do: [:subclass | self removeClassNamed: subclass name].
     MetaBaseclass  removeProtocol: class.
ChangeSet current removeClass: class.
self organization removeElement: className.
self at: className put: nil.
Undeclared declare: className asSymbol from: self.
self flushClassNameCache.
SourceFileManager default logChange: class name,' removeFromSystem'.
class obsolete

4.3.5.7 Browser

The class Browser implements the system browser. A lot of information is hard coded
and hardly adaptable. Hence most changes to the system had to be done in this class.
Newly added methods are:

•  #flushMethodCaches:aSelector
A method was changed. If current class is a protocol then remove selector from all



18  Design & Implementation of Smalltalk Mixin Classes

method dicts using this protocol. If class is a primary base then its method cache
and those of its subclasses are flushed.

•  #baseObjectDef
Display base object definition template.

•  #subclassDef
Display subclass definition template.

•  #protocolDef
display subprotocol definition template

The method #classMenu was changed such that the user gets a menu with subclass crea-
tion templates (subclass, subbase, and subprotocol) to choose from.

classMenu
"Answer a Menu of operations on classes that is to be displayed
when the operate menu button is pressed."
"Browser flushMenus"

className == nil ifTrue: [    ^Menu labels: 'subclass\subbase\subprotocol' withCRs values: #(#subclassDef
    #baseObjectDef #protocolDef)   ].

ClassMenu == nil ifTrue: [ClassMenu := Menu
labels: 'file out as...\hardcopy\spawn\spawn hierarchy

hierarchy\definition\comment
   subclass\subbase\subprotocol
inst var refs...\class var refs...\class refs
move to...\rename as...\remove...' withCRs

lines: #(4 7 10 13)
values: #(#fileOutClass #printOutClass #spawnClass #spawnHierarchy #showHierarchy 

#editClass #editComment     #subclassDef #baseObjectDef #protocolDef    #browseFieldReferences 
#browseClassVariables #browseClassReferences #changeClassCategory #renameClass #removeClass )].
^ClassMenu

In #acceptText:from: we now take into account that there are new browser states (in
terms of class definition).

acceptText: aText from: aController
"Text has been changed.  Store or compile the text, depending on
the current mode of the receiver."

textMode == #classDefinition ifTrue:
[| accepted |
accepted := self acceptClass: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

textMode == #baseObjectDefinition ifTrue:
[| accepted |
accepted := self acceptClass: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

   textMode == #protocolDefinition ifTrue:
   [| accepted |
   accepted := self acceptClass: aText from: aController.
   aController textHasChanged: accepted not.
    ^accepted].

   textMode == #methodDefinition ifTrue:
   [| accepted |
   accepted := self acceptMethod: aText from: aController.
   aController textHasChanged: accepted not.
    ^accepted].

textMode == #categories ifTrue:
[Cursor wait showWhile:

[organization changeFromString: aText string.
self newCategoryList: category].

^true].
textMode == #protocols ifTrue:

[self classForSelectedProtocol organization changeFromString: aText string.
self classForSelectedProtocol reorganize.
self classForSelectedProtocol logOrganizationChange.



Design & Implementation of Smalltalk Mixin Classes  19

self textMode: #protocol; newProtocolList: nil.
^ true].

textMode == #comment ifTrue:
[self nonMetaClass comment: aText string.
self textMode: #comment; newProtocolList: nil.
^ true].

^ false

In #text we now have to call the appropriate subclass creation templates.

text
| text |
textMode == #classDefinition ifTrue:

[className == nil
ifTrue: [^ (Class template: category) asText]
ifFalse: [^ self selectedClass definition asText]].

   textMode == #baseObjectDefinition ifTrue:
   [^ (MetaBaseclass template: category) asText].

   textMode == #protocolDefinition ifTrue:
   [^ ('NameOfSuperProtocol subprotocol: #NameOfProtocol

   category: ', category asString storeString) asText].
textMode == #methodDefinition ifTrue:

[selector == nil
ifTrue: [^ self classForSelectedMethod sourceCodeTemplate asText]
ifFalse: [^ (self classForSelectedMethod sourceCodeAt: selector) asText

makeSelectorBoldIn: self classForSelectedMethod]].
textMode == #category ifTrue:

[^ 'category to add' asText].
textMode == #categories ifTrue:

[^ organization printString asText].
textMode == #protocol ifTrue:

[^ 'protocol to add' asText].
textMode == #protocols ifTrue:

[^ self selectedClass organization printString asText].
textMode == #comment ifTrue:

[text := self selectedClass comment asText.
text isEmpty ifFalse: [^ text].
self selectedClass isMeta ifTrue: [^'Select the browser switch "instance" to see the comment'

asText].
^ self selectedClass commentTemplateString asText].

textMode == #hierarchy ifTrue:
[^ self selectedClass printHierarchy asText].

^ Text new

The method #removeClass warns the user if the class to be deleted is a protocol class and
it is used by one or more BaseObject classes.

removeClass
| class |
self changeRequest ifFalse: [^self].
Dictionary keyNotFoundSignal

handle:
[:ex |
Dialog warn: ('Can''t remove the class. Class <1s> no longer exists.' expandMacrosWith: 

className)
for: self interfaceWindow.

ex return]
do:

["KeyNotFoundSignal is raised when the class name to be removed
in a browser is already removed in another browser."
class := self nonMetaClass.
(Dialog confirm: ('Are you certain that you<n>want to remove the class <1p>?' 

expandMacrosWith: class)
for: self interfaceWindow)
ifTrue:

[class subclasses size > 0 ifTrue: [   (Dialog confirm: ('<1p> has subclasses. Remove it       
   anyway?' expandMacrosWith: class)

   for: self interfaceWindow)
  ifFalse: [^self]].   

   (MetaBaseclass classesSupportingProtocol: class) size > 0 ifTrue: [(Dialog confirm: ('There
   are classes supporting Protocol <1p>. Remove it anyway?' expandMacrosWith: class)



20  Design & Implementation of Smalltalk Mixin Classes

   for: self interfaceWindow)
  ifFalse: [^self]].   

class removeFromSystem.
self newClassList: nil]]

5 Conclusion
Extending Smalltalk with mixin classes can be accomplished with four new classes and
a few changes to the existing system. This clearly shows the flexibility of Smalltalk’s re-
flective architecture. Nevertheless, the implementation is very efficient and as soon as
the method caches are up-to-date, there is no difference between calling primary base
class methods and protocol methods. Moreover, this approach is also portable to at least
IBM/VisualAge Smalltalk, which was proofed by a prototypical implementation.

Terry Montlick describes in [Mon96] the design and implementation of mixin classes in
Smalltalk. However, his approach uses instance based mixins. For every mixin class an
instance is created for each primary base instance. Each primary base instance holds a
collection of mixin instances and each mixin instance holds a reference to its primary
base instance.

This implementation has some advantages:

•  No new metaclasses and changes on the meta classs level.

•  Only Object>>#doesNotUnderstand had to be adapted.

•  Mixin classes can have instance variables (which is usually not desired).

•  Mixins are instance based and can be changed at run-time on an instance basis.

However, this approach also holds several serious disadvantages:

•  Conceptionally mixin classes are not supposed to have  instances.

•  References to mixin instances have to be maintained manually.

•  The implementation cannot be optimized (every call to a mixin method has to be
redirected in #doesNotUnderstand).

•  A primary base instance cannot be referenced using self in a mixin method.

Taking these disadvantages into account a widespread usage of this instance based im-
plementation is quite unlikely.

6 Literature
[Arn96] Ken Arnold and James Gosling, The Java Programming Language,  Addison-

Wesley, Reading, Mass. (1996)

[Cot95] Sean Cotter and Mike Potel, Inside Taligent Technology, Addison-Wesley,
Reading, Mass. (1994)

[Bob88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, David A. Moon, Common Lisp Object System Specification,
X3J13 Document 88-002R, June 1988

[Bra90] Gilad Bracha and William Cook, “Mixin-based Inheritance”, in OOPSLA '90
Proceedings, Ed.: N. Meyrowitz, Sigplan Notices 10(25), ACM, NewYork (1990)

[Bür95] Ute Bürkle, Guido Gryczan and Heinz Züllighoven, "Object-Oriented System
Development in a Banking Project: Methodology, Experiences, and Conclu-
sions", Human Computer Interaction 10, 2&3 (1995)

[Foo89] Brain Foote and Ralph E. Johnson, “Reflective Facilities in Smalltalk-80”, in
OOPSLA '89 Proceedings, Ed.: N. Meyrowitz, Sigplan Notices 10(24), ACM,
NewYork (1989)



Design & Implementation of Smalltalk Mixin Classes  21

[Gam95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat-
terns, Addison-Wesley, Reading, Mass. (1995)

[Gold89] Adele Goldberg and David Robson, Smalltalk-80, The Language, Addison
Wesley, Reading, Mass. (1989)

[Met96] Metrowerks Inc., Inside PowerPlant ™ for CW9, St. Laurent, Canada (1996)

[Mey88] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, Hemel
Hempstead, United Kingdom (1988)

[Mae87] Pattie Maes, “Concepts and Experiments in Computational Reflection”, in
OOPSLA '87 Proceedings, Ed.: N. Meyrowitz, Sigplan Notices 12(22), ACM,
NewYork (1987)

[Mon96] Terry Montlick, “Implementing mixins in Smalltalk”, The Smalltalk Report,
14-15, 5(9), SIGS Publications Inc., New York (1996)

[Par95] ParcPlace-Digitalk, Inc., VisualWorks® User’s Guide, Sunnyvale, CA (1994)

[Rie95] Dirk Riehle and Heinz Züllighoven, "A Pattern Language for Tool Construc-
tion and Integration Based on the Tools and Materials Metaphor", Pattern
Languages of Program Design, Ed.: James O. Coplien and Douglas C. Schmidt,
Addison-Wesley, Reading, MA (1995)

[Str91] Bjarne Stroustrup, The C++ Programming Language, Second Edition, Addison-
Wesley, Reading, Mass. (1991)

[Tal94] Taligent Inc., Taligent´s Guide to Designing Programs, Addison-Wesley, Read-
ing, Mass. (1995)



22  Design & Implementation of Smalltalk Mixin Classes

7 Source Code

7.1 BaseObject

Object subclass: #BaseObject
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Mixins'

doesNotUnderstand: aMessage
"Method could not be found. Try to find method in protocol classes, copy it,
install it in the first supporter's method dictionary and send the message again.
Treat super send differently by starting search in superclass"

| method block t1 t2 byte sendContext metaclass firstSupporter |
block := [t1 := t2].
sendContext := block outerContext sender.
byte := sendContext method byteAt: sendContext pc - 2.
metaclass := self class class.
byte == 242 ifTrue: [metaclass := metaclass superclass].
MethodDictionary keyNotFoundSignal

handle: [:ex | method := nil]
do: [method := metaclass compiledMethodAt: aMessage selector].

method == nil
ifTrue: [super doesNotUnderstand: aMessage]
ifFalse: [method := method copy].

firstSupporter := metaclass firstProtocolSupporter: method mclass.
method mclass: firstSupporter.
firstSupporter addSelector: aMessage selector withMethod: method.
^method valueWithReceiver: self arguments: aMessage arguments

7.2 Protocol

Object subclass: #Protocol
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Ecoop-Tutorial-Reflection'

new
"Raise an error since Protocol must not have any instances"

self error: 'Protocol must not have instances'

new: anInteger
"Raise an error since Protocol must not have any instances"

self error: 'Protocol must not have instances'

7.3 MetaBaseclass

Metaclass subclass: #MetaBaseclass
instanceVariableNames: 'protocol '
classVariableNames: ''
poolDictionaries: ''
category: 'Ecoop-Tutorial-Reflection'

protocol
^protocol

protocol: aCollection
protocol := aCollection asOrderedCollection



Design & Implementation of Smalltalk Mixin Classes  23

new
"The receiver can only have one instance.  Create it or complain that
one already exists."

thisClass == nil
ifTrue: [^thisClass := super new]
ifFalse: [self error: 'A MetaBaseClass should only have one instance!!']

protocolString
"Answer a string of my protocol names separated by spaces."

| aStream names |
aStream := WriteStream on: (String new: 100).
names := self protocol.
1 to: names size do: [:i | aStream nextPutAll: (names at: i); space].
^ aStream contents

canUnderstand: selector
"Answer true if one of the receivers protocol classes can respond to the message
whose selector is the argument"

protocol do: [:each | ((Smalltalk at:each) canUnderstand: selector) ifTrue: [^true]].
^false

compiledMethodAt: aSelector
"return compiled method; search depth first"

| protocolClass |
protocol do: [:each | (protocolClass := (Smalltalk at: each)

whichClassIncludesSelector: aSelector) ~~ nil ifTrue: [^protocolClass compiledMethodAt: 
aSelector]].

superclass ~~ BaseObject class ifTrue: [^superclass compiledMethodAt: aSelector].
^nil

flushMethodCache
"flush method caches of this class and its subclasses"

((thisClass allSubclasses) add: thisClass; yourself) do: [:each | each selectors do: [:eachSelector | (each 
organization includesElement: eachSelector)

ifFalse: [each removeSelector: eachSelector]]]

supportsProtocol: aProtocol
"Check whether receiver’s instance supports a protocol:
- aProtocol is listed in protocol
- aProtocol is a baseprotocol of one of the protocols in protocol"

(protocol includes: aProtocol printString)
ifTrue: [^true].

protocol do: [:each | ((Smalltalk at: each asSymbol)
inheritsFrom: (aProtocol))
ifTrue: [^true]].

superclass ~~BaseObject class ifTrue: [^superclass supportsProtocol: aProtocol].
^false

firstProtocolSupporter: aProtocol
"starting with thisClass return the first class up the hierarchy supporting
aProtocol"

| classProtocol |
thisClass withAllSuperclasses do: [:eachClass | eachClass ~~ BaseObject

ifTrue:
[classProtocol := eachClass class protocol.
(classProtocol includes: aProtocol printString)

ifTrue: [^eachClass].
classProtocol do: [:each | ((Smalltalk at: each asSymbol)

inheritsFrom: aProtocol)
ifTrue: [^eachClass]]]

ifFalse: [^nil]]



24  Design & Implementation of Smalltalk Mixin Classes

template: category
"Answer an expression that can be edited and evaluated in order to define
 a new class with mixin protocols."

^'NameOfSuperclass subclass: #NameOfClass
protocol: ''protocol1 protocol2''
instanceVariableNames: ''instVarName1 instVarName2''
classVariableNames: ''ClassVarName1 ClassVarName2''
poolDictionaries: ''''
category: ', category asString storeString

classesSupportingProtocol: aProtocol
"return a collection of all classes supporting aProtocol"

| protocolsToTest |
protocolsToTest := (aProtocol allSubclasses) add: aProtocol; yourself.
^BaseObject allSubclasses select: [:eachClass | (protocolsToTest detect: [:eachProtocol | eachClass class s

upportsProtocol: eachProtocol]
ifNone: [nil]) notNil]

removeProtocol: aProtocol
"remove a Protocol
- flush relevant method caches
- remove protocol from supporting classes"

| aProtocolName |
aProtocolName := aProtocol printString.
(aProtocol inheritsFrom: Protocol)

ifTrue: [BaseObject allSubclassesDo: [:each | (each class protocol includes: aProtocolName)
ifTrue:

[each class flushMethodCache.
each class protocol remove: aProtocolName]]]

converter
"Return message that has to be executed if self has to be converted"

^#asMetaBaseclass

copyFrom: aMetaclass
"copy all instance variables from aMetaclass into self"

super copyFrom: aMetaclass.
aMetaclass class == self class

ifTrue: [protocol := aMetaclass protocol]
ifFalse: [protocol := OrderedCollection new]

asMetaclass
"return an copy of self but as an instance of Metaclass "

| newMeta |
newMeta := Metaclass new.
newMeta copyFrom: self.
^newMeta

asMetaBaseclass
"return self since it is already an instance of MetaBaseclass "

^self

7.4 BaseclassBuilder

ClassBuilder subclass: #BaseclassBuilder
instanceVariableNames: 'protocol '
classVariableNames: ''
poolDictionaries: ''
category: 'Ecoop-Tutorial-Reflection'



Design & Implementation of Smalltalk Mixin Classes  25

protocol
^protocol

protocol: anArray
protocol := anArray

protocolString: aString
self protocol: (self scan: aString)

createNewSubclass
"The class does not exist--create a new class-metaclass pair"

| newMeta |
self runValidationChecksForNewClass.
newMeta := self metaclassClass new.
newMeta assignSuperclass: (self classOf: superclass).
newMeta methodDictionary: MethodDictionary new.
newMeta setInstanceFormat: (self classOf: superclass) format.
newMeta protocol: self protocol.
class := newMeta new.
class assignSuperclass: superclass.
class methodDictionary: MethodDictionary new.
class setInstanceFormat: self computeFormat.
self setStructureOf: class.
class setName: className.
self register: class inPlaceOf: nil.
self changeMicroState.
^self logNew: class

modifyExistingClass
"Enumerate the legal types of changes and perform them.  If a new
class was created, the final check for which kind of mutation is
skipped, since a new class needs no mutation"

self runValidationChecks.
self adaptMetaclass.
self flushMethodCache: class.
self needsMutation

ifTrue: [self doMutationInPlace
ifTrue: [self mutateCurrentClass]
ifFalse: [self mutateToNewClass]].

self changeMicroState.
^self logChanged: self currentClass

changeMicroState
"Change those aspects of the class that are relatively independent
of any other changes to the class"

self changeCategory.
self changeClassVariables.
self changePools.
self sanityCheck: class.
self currentClass class protocol: self protocol.
recompile ifTrue:

[class withAllSubclasses
do: [:cls |

Transcript show: cls name, ' recompiling...'.
cls rebindAllMethods.
Transcript show: 'done'; cr]]

mutateToNewClass
"Modify class to be a subclass of superclass"

self flushMethodCaches: class.
^super mutateToNewClass

metaclassClass
"The class used to create new metaclasses when they are needed"

^MetaBaseclass



26  Design & Implementation of Smalltalk Mixin Classes

runValidationChecks
"'Prove' that the protocols are existing and class is derived from BaseObject"

super runValidationChecks.
self validateBaseObject.
self validateProtocol

runValidationChecksForNewClass
"'Prove' that the protocols are existing and class is derived from BaseObject"

super runValidationChecksForNewClass.
self validateBaseObject.
self validateProtocol

validateBaseObject
"'Prove' that class is derived from BaseObject"

(self superclass == BaseObject or: [self superclass inheritsFrom: BaseObject])
ifFalse: [self failureSignal raiseErrorString: self className , ' must be derived from BaseObject.']

validateProtocol
"Check:
- duplicate protocols
- protocol is a class
- protocol is derived from Protocol
- protocol has no instance variables"
| classes |
classes := Smalltalk classNames.
protocol

do:
[:each |
(protocol occurrencesOf: each) > 1 ifTrue: [self failureSignal raiseErrorString: 'Protocol ' , each , ' occurs 

more than once.'].
(classes includes: each asSymbol)

ifFalse: [self failureSignal raiseErrorString: 'Protocol ' , each , ' not available.']
ifTrue: [((Smalltalk at: each asSymbol)

inheritsFrom: Protocol)
ifFalse: [self failureSignal raiseErrorString: 'Class ' , each , ' is not derived from Protocol.']].

(Smalltalk at: each asSymbol) instVarNames isEmpty ifFalse: [self failureSignal raiseErrorString: 'Protocol
' , each , ' has instance variables,\which is not valid for protocol classes.' withCRs]]

flushMethodCache: aClass
"Flush method caches. aClass is BaseClass -> flush class and all classes
down the hierarchy.
aClass is Protocol -> flush all classes mixing in this protocol"

(aClass inheritsFrom: BaseObject)
ifTrue: [aClass class flushMethodCache].

(aClass inheritsFrom: Protocol)
ifTrue: [BaseObject allSubclasses do: [:each | (each class supportsProtocol: aClass)

ifTrue: [each selectors do: [:eachSelector | (each organization includesElement: eachSelector)
ifFalse: [each removeSelector: eachSelector]]]]]

7.5 Class

subclass: t instanceVariableNames: f classVariableNames: d poolDictionaries: s category: cat
"This is the standard initialization message for creating a new class as a
subclass
of an existing class (the receiver)."

| approved |
approved := SystemUtils

validateClassName: t
confirm: [:msg :nm | Dialog confirm: msg]
warn: [:msg | Dialog warn: msg].

approved == nil ifTrue: [^nil].
(self inheritsFrom: BaseObject)

ifTrue: [^self
subclass: t
protocol: ''



Design & Implementation of Smalltalk Mixin Classes  27

instanceVariableNames: f
classVariableNames: d
poolDictionaries: s
category: cat].

^(self classBuilder) superclass: self; environment: self environment; className: approved; instVarString: f; 
classVarString: d; poolString: (self computeFullPoolString: s); category: cat; beFixed; reviseSystem

subclass: t protocol: p instanceVariableNames: f classVariableNames: d poolDictionaries: s category: cat
"This is the standard initialization message for creating a new class as a subclass
of an existing class (the receiver)."

| approved |
approved := SystemUtils

validateClassName: t
confirm: [:msg :nm | Dialog confirm: msg]
warn: [:msg | Dialog warn: msg].

approved == nil ifTrue: [^nil].
^BaseclassBuilder new

superclass: self;
environment: self environment;
className: approved;
protocolString: p;
instVarString: f;
classVarString: d;
poolString: (self computeFullPoolString: s);
category: cat;
beFixed;
reviseSystem

subprotocol: t category: cat
"This is the standard initialization message for creating a new class as a subclass
of an existing class (the receiver)."

| approved |
approved := SystemUtils

validateClassName: t
confirm: [:msg :nm | Dialog confirm: msg]
warn: [:msg | Dialog warn: msg].

approved == nil ifTrue: [^nil].
(self == Protocol or: [self inheritsFrom: Protocol]) ifFalse: [^nil].
^ClassBuilder new

superclass: self;
environment: self environment;
className: approved;
instVarString: '';
classVarString: '';
poolString: (self computeFullPoolString: '');
category: cat;
beFixed;
reviseSystem

7.6 ClassDescription

definitionMessage
"Answer a MessageSend that defines the receiver."

| selector isProtocol isBaseObject args |
isBaseObject := self inheritsFrom: BaseObject.
isProtocol := self inheritsFrom: Protocol.
isBaseObject ifTrue: [selector := 

#subclass:protocol:instanceVariableNames:classVariableNames:poolDictionaries:category:].
isProtocol ifTrue: [selector := #subprotocol:category:].
isProtocol | isBaseObject ifFalse: [selector := self isVariable

ifTrue: [self isBits
ifTrue: 

[#variableByteSubclass:instanceVariableNames:classVariableNames:poolDictionaries:category:]
ifFalse: 

[#variableSubclass:instanceVariableNames:classVariableNames:poolDictionaries:category:]]
ifFalse: [#subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:]].

isBaseObject ifTrue: [args := (Array new: 5)



28  Design & Implementation of Smalltalk Mixin Classes

at: 1 put: self name;
at: 2 put: self class protocolString;
at: 3 put: self instanceVariablesString;
at: 4 put: self classVariablesString;
at: 5 put: self sharedPoolsString; yourself].

isProtocol ifTrue: [args := Array with: self name].
isProtocol | isBaseObject ifFalse: [args := Array

with: self name
with: self instanceVariablesString
with: self classVariablesString
with: self sharedPoolsString].

^MessageSend
receiver: superclass
selector: selector
arguments: (args copyWith: self category asString)

7.7 Behavior

canUnderstand: selector
"Answer true if the receiver can respond to the message whose selector
is the argument, false otherwise.  The selector can be in the method dictionary
of the receiver's class, any of its superclasses, or in its protocol classes"

(self includesSelector: selector) ifTrue: [^true].
superclass notNil ifTrue: [(superclass canUnderstand: selector) ifTrue: [^true]].
(self class isMemberOf: MetaBaseclass) ifTrue: [^self class canUnderstand: selector].
^false

7.8 Metaclass

converter
"Return message that has to be executed if self has to be converted"

thisClass == BaseObject
ifTrue: [^#asMetaBaseclass]
ifFalse: [^#asMetaclass]

copyFrom: aMetaclass
"copy all instance variables from aMetaclass into self"

superclass := aMetaclass superclass.
methodDict := aMetaclass getMethodDictionary.
format := aMetaclass format.
subclasses := aMetaclass getSubclasses.
instanceVariables := aMetaclass instVarNames.
organization := aMetaclass organization.
thisClass := aMetaclass soleInstance.

asMetaclass
"return self since it is already an instance of MetaBaseclass "

^self

asMetaBaseclass
"return an copy of self but as an instance of MetaBaseclass "

| newMeta |
newMeta := MetaBaseclass new.
newMeta copyFrom: self.
^newMeta



Design & Implementation of Smalltalk Mixin Classes  29

7.9 ClassBuilder

modifyExistingClass
"Enumerate the legal types of changes and perform them.  If a new
class was created, the final check for which kind of mutation is
skipped, since a new class needs no mutation"

self runValidationChecks.
self adaptMetaclass.
self needsMutation

ifTrue: [self doMutationInPlace
ifTrue: [self mutateCurrentClass]
ifFalse: [self mutateToNewClass]].

self changeMicroState.
^self logChanged: self currentClass

adaptMetaclass
"if class changes from the Object hierarchy to the BaseObject hierarchy or vice versa, mutate its metaclass"

|  converter selfBase superBase |
selfBase := self currentClass inheritsFrom: BaseObject.
superBase := (self superclass inheritsFrom: BaseObject) or: [self superclass == BaseObject].
converter := self superclass class converter.
(selfBase xor: superBase) ifTrue:

[self currentClass withAllSubclasses do:
[:eachClass | eachClass class become: (eachClass class perform: converter)]]

7.10 SystemDictionary

removeClassNamed: className
"Remove the class with the name className, and all of its subclasses,
from the system, and note the removal in the system ChangeSet."

| class |
class := self at: className asSymbol ifAbsent: [^self].
"remove subclasses first"
class subclasses do: [:subclass | self removeClassNamed: subclass name].
MetaBaseclass  removeProtocol: class.
ChangeSet current removeClass: class.
self organization removeElement: className.
self at: className put: nil.
Undeclared declare: className asSymbol from: self.
self flushClassNameCache.
SourceFileManager default logChange: class name,' removeFromSystem'.
class obsolete

7.11 Browser

acceptClass: aText from: aController
| oldClass class name |
oldClass := className == nil

ifTrue: [Object]
ifFalse: [self selectedClass].

class := Object errorSignal
handle:

[:ex |
ex willProceed

ifTrue: [(Dialog confirm: ('<1s><n>Do you want to continue?' expandMacrosWith: ex 
errorString)

for: self interfaceWindow)
ifTrue: [ex proceed]]

ifFalse: [Dialog warn: ex errorString for: self interfaceWindow].
ex returnWith: nil]

do:
[| theClass |
Cursor execute

showWhile:



30  Design & Implementation of Smalltalk Mixin Classes

[theClass := oldClass subclassDefinerClass new
evaluate: aText string
in: nil
receiver: nil
notifying: aController
ifFail: [^false]].

SourceFileManager default logChange: aText string.
theClass].

class isBehavior
ifTrue:

[class isMeta
ifTrue: [name := class soleInstance name]
ifFalse: [name := class name].

self newClassList: name.
^true]

ifFalse: [^false]

acceptMethod: aText from: aController
| newSelector |
newSelector := self classForSelectedProtocol

compile: aText
classified: protocol
notifying: aController.

newSelector == nil ifTrue: [^false].
self flushMethodCaches: newSelector.
newSelector == selector

ifFalse: [self newSelectorList: newSelector].
^true

acceptText: aText from: aController
"Text has been changed.  Store or compile the text, depending on
the current mode of the receiver."

textMode == #classDefinition ifTrue:
[| accepted |
accepted := self acceptClass: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

textMode == #baseObjectDefinition ifTrue:
[| accepted |
accepted := self acceptClass: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

textMode == #protocolDefinition ifTrue:
[| accepted |
accepted := self acceptClass: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

textMode == #methodDefinition ifTrue:
[| accepted |
accepted := self acceptMethod: aText from: aController.
aController textHasChanged: accepted not.
^accepted].

textMode == #categories ifTrue:
[Cursor wait showWhile:

[organization changeFromString: aText string.
self newCategoryList: category].

^true].
textMode == #protocols ifTrue:

[self classForSelectedProtocol organization changeFromString: aText string.
self classForSelectedProtocol reorganize.
self classForSelectedProtocol logOrganizationChange.
self textMode: #protocol; newProtocolList: nil.
^ true].

textMode == #comment ifTrue:
[self nonMetaClass comment: aText string.
self textMode: #comment; newProtocolList: nil.
^ true].

^ false



Design & Implementation of Smalltalk Mixin Classes  31

baseObjectDef
"display base object definition template"

self className: nil.
self changeRequest ifFalse: [^self].
self textMode: #baseObjectDefinition.
self newProtocolList: nil

classMenu
"Answer a Menu of operations on classes that is to be displayed
when the operate menu button is pressed."
"Browser flushMenus"

className == nil ifTrue: [^Menu labels: 'subclass\subbase\subprotocol' withCRs values: #(#subclassDef 
#baseObjectDef #protocolDef)].
ClassMenu == nil ifTrue: [ClassMenu := Menu

labels: 'file out as...\hardcopy\spawn\spawn hierarchy
hierarchy\definition\comment
subclass\subbase\subprotocol
inst var refs...\class var refs...\class refs
move to...\rename as...\remove...' withCRs

lines: #(4 7 10 13)
values: #(#fileOutClass #printOutClass #spawnClass #spawnHierarchy #showHierarchy #edit-

Class #editComment #subclassDef #baseObjectDef #protocolDef #browseFieldReferences #browseClassVariables
#browseClassReferences #changeClassCategory #renameClass #removeClass )].
^ClassMenu

flushMethodCaches: aSelector
"- protocol class ->flush method caches of classes using this protocol
- primary base ->flush method cache down the hierarchy"

| thisClass |
thisClass := Smalltalk at: className ifAbsent: [^self].
(thisClass inheritsFrom: Protocol)

ifTrue: [BaseObject allSubclasses do: [:each | (each organization includesElement: aSelector)
ifFalse: [each removeSelector: aSelector]]].

(thisClass inheritsFrom: BaseObject)
ifTrue: [thisClass class flushMethodCache]

protocolDef
"display protocol definition template"

self className: nil.
self changeRequest ifFalse: [^self].
self textMode: #protocolDefinition.
self newProtocolList: nil

removeClass
| class |
self changeRequest ifFalse: [^self].
Dictionary keyNotFoundSignal

handle:
[:ex |
Dialog warn: ('Can''t remove the class. Class <1s> no longer exists.' expandMacrosWith: className)

for: self interfaceWindow.
ex return]

do:
["KeyNotFoundSignal is raised when the class name to be removed
in a browser is already removed in another browser."
class := self nonMetaClass.
(Dialog confirm: ('Are you certain that you<n>want to remove the class <1p>?' expandMacrosWith:

class)
for: self interfaceWindow)
ifTrue:

[class subclasses size > 0 ifTrue: [(Dialog confirm: ('<1p> has subclasses. Remove it anyway?' 
expandMacrosWith: class)

for: self interfaceWindow)
ifFalse: [^self]].

(MetaBaseclass classesSupportingProtocol: class) size > 0 ifTrue: [(Dialog confirm: ('There are 
classes supporting Protocol <1p>. Remove it anyway?' expandMacrosWith: class)

for: self interfaceWindow)



32  Design & Implementation of Smalltalk Mixin Classes

ifFalse: [^self]].
class removeFromSystem.
self newClassList: nil]]

subclassDef
"display subclass definition template"

self className: nil.
self changeRequest ifFalse: [^self].
self textMode: #classDefinition.
self newProtocolList: nil

text
| text |
textMode == #classDefinition ifTrue:

[className == nil
ifTrue: [^ (Class template: category) asText]
ifFalse: [^ self selectedClass definition asText]].

textMode == #baseObjectDefinition ifTrue:
[^ (MetaBaseclass template: category) asText].

textMode == #protocolDefinition ifTrue:
[^ ('NameOfSuperProtocol subprotocol: #NameOfProtocol

category: ', category asString storeString) asText].
textMode == #methodDefinition ifTrue:

[selector == nil
ifTrue: [^ self classForSelectedMethod sourceCodeTemplate asText]
ifFalse: [^ (self classForSelectedMethod sourceCodeAt: selector) asText

makeSelectorBoldIn: self classForSelectedMethod]].
textMode == #category ifTrue:

[^ 'category to add' asText].
textMode == #categories ifTrue:

[^ organization printString asText].
textMode == #protocol ifTrue:

[^ 'protocol to add' asText].
textMode == #protocols ifTrue:

[^ self selectedClass organization printString asText].
textMode == #comment ifTrue:

[text := self selectedClass comment asText.
text isEmpty ifFalse: [^ text].
self selectedClass isMeta ifTrue: [^'Select the browser switch "instance" to see the comment' asText].
^ self selectedClass commentTemplateString asText].

textMode == #hierarchy ifTrue:
[^ self selectedClass printHierarchy asText].

^ Text new



Ubilab Technical Reports

94.6.1 Maffeis S, Bischofberger WR, Mätzel K-U: GTS: A Generic Multicast Transport
Service

94.9.1 Bischofberger WR, Kofler T, Mätzel K-U, Schäffer B: Computer Supported
Cooperative Software Engineering with Beyond-Sniff

94.9.2 Bäumer D, Bischofberger WR, Lichter H, Schneider-Hufschmitdt M,
Sedlmeier-Scholz V, Züllighoven H: Prototyping von Benutzungsoberflächen

94.10.1 Steiger P, Ansel Suter B: Minnelli Schlussbericht

94.10.2 Levy N, Hornstein T: Text-to-Speech Technology: A Survey of German Speech
Synthesis Systems

95.6.1 Riehle D: Muster am Beispiel der Werkzeug und Material Metapher

95.7.1 Riehle D, Schäffer B, Schnyder M: Design and Implementation of a Smalltalk
Framework based on the Tools and Materials Metaphor

97.1.1 Riehle D: A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose

97.3.1 Brudermann R: GeoTransporter—Entwurf und Implementierung eines
Objekttransportes für das Geo-System

97.6.1 Mätzel K L, Schnorf P: Dynamic Component Adaptation

97.7.1 Barja M L: A Comparative Evaluation  of  OODBMSs

98.5.1 Marsura P, Riehle D: Design and Implementation of the Java Any Framework

98.10.1 Bäumer D, Riehle D, Siberski W, Lilienthal C, Megert D, Sylla K H,
Züllighoven H: Values in Object Systems

Paper copies of Ubilab technical reports can be ordered from the mailing address on the
first page or by e-mail from its author using the scheme firstname.lastname@ubs.com.
Most reports can also be obtained as PostScript files via WWW
(http://www.ubs.com/ubilab).



Abstract

Multiple inheritance has become fashionable with the widespread use of C++. However,
its unreflected use introduces more complexity than it tries to solve. In most cases mixin
classes are a cleaner solution and better suited to design an object-oriented system. Java,
for example,  does not offer multiple inheritance but provides interfaces which are mixin
classes. Smalltalk did provide multiple inheritance but it was never used in the class li-
brary and therefore removed after some time. Smalltalk is a reflective environment and
allows the implementation of mixin classes at almost no cost at runtime. We present the
design and implementation of Smalltalk mixin classes in VisualWorks\Smalltalk and
compare it to an alternative.


