
Product Trader

Dirk Bäumer and Dirk Riehle

INTENT1

Let clients create objects by naming an abstract superclass and by providing a specification. A
Product Trader decouples the client from the product and thereby eases the adaptation, configu-
ration and evolution of class hierarchies, frameworks and applications.

ALSO KNOWN AS

Virtual Constructor, Late Creation

MOTIVATION

Suppose you have designed a class hierarchy of domain value types like AccountNumber,
Amount, InterestRate or SocialSecurityNumber. These value types will be used in several appli-
cations. For example, one such application will present a form on the screen and let users edit its
fields. The value types of the fields correspond to the domain value types. Since each value type
has its own semantics and editing constraints, you might want to provide specialized widgets for
each of these value types as shown in figure 1 and 2:

DateAmount I nterestRateAccountNumber

DomainValue

Figure 1: DomainValue class hierarchy

Date
Widget

CreditAmount
Widget

InterestRate
Widget

AccountNumber
Widget

DomainWidget

Amount
Widget

Figure 2: DomainWidget class hierarchy with specialized AmountWidget class

1 In Pattern Languages of Program Design 3. Edited by Robert C. Martin, Dirk Riehle and Frank Buschmann.
Reading, MA: Addison-Wesley, 1997. Chapter 3.

2

Given a Form object with all the fields and associated value types, how do you create the widgets
corresponding to the value types?

You might be tempted to write a big case statement for all value types which creates a widget for
a given value type, but this cumbersome and might require frequent changes and enhancements.
You might use a Factory Method for the value types so that each value type can return a default
widget for it. But then you will only be able to provide a single widget type for a value type.
Moreover, if the value types are used in a non-interactive environment, like nightly batch runs,
you make the batch application link the window system even though it isn’t needed. You might
also consider using an Abstract Factory. While this hides the creation process from the client, it
doesn’t clarify what happens behind the factory interface; you might still have to write a big case
statement to distinguish between the different value types.

It is much better to go to some object and ask it to return an instance of a DomainWidget sub-
class which fits a given value type best. This object might be the abstract DomainWidget class
itself, or a factory object or a trader object. We call this pattern Product Trader and it is all about
how to do this flexibly and efficiently.

Suppose, DomainWidget offers a class operation that lets you do this. In C++, it looks like

static DomainWidget* DomainWidget::createFor(DomainValue*);

and in Smalltalk it looks like

DomainWidget class>>createFor: aDomainValue.

Internally, the widget class might maintain a dictionary of all its subclasses which it indexes with
the class representing a given value type. createFor can be easily implemented then: The
DomainWidget class takes the value type’s class as a key for the dictionary, which returns the
widget subclass specifically designed for the value type. It then creates an instance of it which it
returns to the client. This process is fast and requires only constant time.

The actual class which is to be instantiated is determined only at runtime, and it is accessed using
abstract classes only. Thus, the concrete subclasses are hidden from the client. Moreover, the
dictionary can be changed and reconfigured at runtime. This lets us easily configure and evolve
class hierarchies, frameworks and applications.

APPLICABILITY

Use a Product Trader, if

• you want to make clients fully independent from concrete implementations of the abstract
Product class (decoupling argument); or

• you want to dynamically select a product class according to selection criteria available only
at runtime (dynamic selection argument); or

• you want to configure the kinds of product classes instantiated for a given selection criterion,
either statically or at runtime (flexible configuration argument); or

• you want to change and evolve the product class hierarchy without affecting clients
(evolution argument).

Do not use a Product Trader as a replacement for Factory Methods or direct object creation.

3

STRUCTURE

The structure diagram is shown in figure 3.

ProductCreator

Client

ConcreteProductA

ConcreteProductB

Specification ProductTrader

Product create(Spec)
Class productClass()

Product create(Spec)
Creator lookup(Spec)

add(Creator)
remove(Creator)
substitute(Creator)

boolean match(Spec)
integer hashcode()

Figure 3: Structure diagram of the Product Trader pattern

PARTICIPANTS

• Client (Form)

– creates a Specification for a ConcreteProduct class;

– initiates the creation process by providing the Product Trader with a Specification.

• Product (DomainWidget)

– defines the interface to a class hierarchy of which objects are to be instantiated.

• ConcreteProduct (DateWidget, AmountWidget)

– represents a concrete Product class;

– provides enough information to decide whether it matches a Specification.

• Product Trader (DomainWidget class object)

– provides operations which let a client supply a Specification for a ConcreteProduct class;

– maps a Specification onto a Creator for a ConcreteProduct class;

– provides operations to configure the mapping by some configuration mechanism;

– can be as simple as a hashtable and as complex as a full Object Trader.

• Creator (ConcreteProduct class objects)

– defines the interface to create instances of a ConcreteProduct;

– knows how to instantiate exactly one ConcreteProduct;

• Specification (DomainValue subclasses)

– represents a specification of a ConcreteProduct class;

– is used as the lookup argument for a Creator instance;

4

– can be as lightweight as a string and as heavyweight as a propositional calculus formula.

COLLABORATIONS

Figure 4 shows an interaction diagram of a Product selection and creation process. The following
collaborations are involved:

• The Client asks the Product Trader for a Product instance matching a Specification.

• The Product Trader maintains a dictionary of Creator instances.

• The Product Trader looks up a Creator for a given Specification.

• The Product Trader delegates the creation process to a Creator.

• A Creator creates a ConcreteProduct instance.

new
create

new

hashcode

createFor

aConcreteProductaCreatoraProductTraderaSpecificationaClient

lookup

Figure 4: Interaction diagram of Product Trader

CONSEQUENCES

The Product Trader pattern has the following advantages and consequences:

• Clients become independent of ConcreteProduct classes. Clients are fully decoupled from the
internal structure of the Product class hierarchy. Once you have written the code which cre-
ates the Specification instance and calls the createFor operation of the abstract Product class,
you are done with the client code.

• Product classes are determined at runtime. Sometimes, the criteria which define the class
fitting a task best are not known until runtime. Product Trader lets you turn these criteria into
a Specification at runtime and use it for ConcreteProduct class lookup. Thus, you get the
maximum flexibility for selecting ConcreteProduct classes.

• Products can be configured for specific domains. Product Trader lets you configure the avail-
able ConcreteProduct classes created via the abstract Product class by adding, substituting
and removing Creators for ConcreteProduct classes. This lets you easily configure frame-
works and applications for specific domains.

5

• Product class hierarchies can be evolved easily. Since clients are fully decoupled from the
internals of the Product class hierarchy, class names, hierarchy structure, and implementation
strategies of ConcreteProduct classes can be changed without affecting them (as long as the
ConcreteProduct classes preserve the semantics of the abstract Product class).

• New product classes can be introduced easily. It is very easy to add new ConcreteProduct
classes to an existing framework—it does not require any changes to the framework. New
ConcreteProduct classes can be written without having to change existing code. Only con-
figuration code or makefiles have to be changed.

• Products need not be single classes but can be any complex component. The Creator might
hide potentially complex creation processes, for example by cloning complex Prototype
structures.

The Product Trader pattern has the following disadvantages and liabilities:

• Increased control and dependency complexity. The pattern turns compile-time dependencies
of product creation into runtime dependencies. This makes the resulting system harder to un-
derstand, because the dependencies are not explicitly written down as code.

• Need for advanced configuration mechanisms. When applying Product Trader, objects of
classes can and will be created which are not statically referenced starting with some root
class. Thus, a linker might consider those classes as superfluous and decide not to link them.
See the Implementation section for techniques of dealing with this problem.

• Ambiguous specifications. Depending on the type and implementation of a specification, not
only a single class can match it but rather a set of equivalent classes (with respect to the
specification). This does not pose problems, since any class matching the requirements will
do the job. However, ambiguities might indicate that the specification itself was either impre-
cise or underdetermined.

• Special constructor parameters require overhead. If a ConcreteProduct class requires special
constructor parameters during the early object building process, you must supply them in ad-
vance. It requires some overhead to do so. You could broaden the creation interface or put the
constructor parameters into a generic parameter carrier object. You should be careful, how-
ever, not to make any implicit assumptions about specific subclasses being selected by your
Specification.

IMPLEMENTATION

The implementation of a Product Trader requires four main dimensions to be considered: the im-
plementation of the mapping from Specification to Creator, the implementation of the Creator
itself, the implementation of Specifications and configuration mechanisms.

• Implementing the mapping from Specification to Creator. The mapping can be realized by a
simple dictionary in the abstract Product class, or by delegating the task to a product specific
ProductTrader, or by delegating the task to a global ProductTrader.

– Using a simple dictionary puts the management of the mapping into the abstract Product
class. This is only advisable, if Product Trader is applied to the Product hierarchy only,
and if the handling of specifications is very specialized for this particular class hierarchy.
Otherwise consider using a ProductTrader.

6

– Using a ProductTrader takes the burden of managing specifications, creators, and the
mapping from specifications to creators from the Product class. Each class hierarchy can
have its own ProductTrader which deals with specifications for this class hierarchy. This
solution is both flexible and offers good code reuse.

– Using a single global ProductTrader centralizes all specifications and all class semantics
in one single place. This goes beyond the class hierarchy specific ProductTrader and
should be applied if complex class retrieval and runtime configuration issues must be
considered.

• Implementing Creators. Creators can be implemented as prototypes, class objects, or specific
dedicated Creator objects, for example generated by C++ templates. You will want to avoid
introducing a Creator class for every Product class by hand, so consider using one of these
variants.

– Using prototypes or class objects amounts to about the same: These objects come for free
with any major system and usually provide a clone or a create operation which can carry
out the actual creation of the Product instance. The clone operation must be robust with
respect to copying.

– Using dedicated Creator objects. In C++, you can use macros or templates to generate the
Creator objects. We present a C++ template based version as a type-safe solution. An
analysis of the Creator’s responsibilities leads us to the following definition of a Creator
and ConcreteCreator template:

template<class ProductType, class SpecType>
class Creator
{
public:
 Creator(SpecType aSpec) : _aSpecification(aSpec) {}
 SpecType getSpecification() { return _aSpecification; }
 ProductType * create() =0;

private:
 SpecType _aSpecification;
};

template<class ProductType, class ConcreteProductType, class SpecType>
class ConcreteCreator : public Creator<ProductType, SpecType>
{
public:
 ConcreteCreator(SpecType aSpec) : Creator<ProductType, SpecType>(aSpec) {}
 ProductType * create() { return new ConcreteProductType; }
}

 The Creator template requires two formal arguments, the ProductType and the SpecType
(specification type). Usually, the Specification itself is not maintained by the Creator,
rather it is the argument for the mapping which leads to the Creator in the first place.
However, for management purposes in ProductTraders it is convenient to store a specifi-
cation with the Creator, given that there is only a single specification which leads to the
specific Creator. Eventually, the ConcreteCreator template adds the code for actually cre-
ating an instance of a ConcreteProduct class.

 A closer look at the templates reveals that they are fairly simple, essentially only defining
interfaces and the create operation for concrete product classes. These templates can only
be used for product classes where the constructor doesn’t need any parameters. In case
that parameters must be passed to the Product class constructor, additional templates are
needed. A replication of the above two template classes is the result.

7

• Implementing Specifications. Specifications can be realized either directly in the parameters
of the creation operation by some primitive value types, or by encapsulating them as classes
of their own. This issue affects the implementation of the mapping:

– Using built-in value types like integers, character strings, etc. often requires additional
support like free floating operations to compute hash-codes, etc. Essentially, you must de-
fine operations which make the value types usable as lookup arguments for the mapping.

– Using explicit Specification objects allows you to define the proper interface for specifi-
cations once and reuse it for every new specification. Moreover, ProductTraders can be
written based on this explicit interface and reused as well. Such a Specification interface
might look like this:

class Specification
{
public:
 // returns Product class, that is the root class of classes
 // addressed by this type of specification
 virtual Class* getProductClass() =0;

 // initialize specification to match semantics of a given Product class
 virtual void initForProduct(Class* pc) { this->adaptTo(pc); }

 // initialize specification to match semantics of a given Product class
 virtual void adaptTo(Class*);

 // match two specifications for equivalence
 virtual bool matches(Specification*) =0;
};

• Configuring frameworks and applications. Product Trader creates objects only indirectly by
interpreting specifications. Thus, ConcreteProduct classes are not directly referenced by
framework or application code, but only abstract interfaces like the Product class are. As a
consequence, you must specify explicitly which classes are to be linked to an application, be-
cause linkers might not link classes which are not directly referenced by code reachable from
some root object (or main).

– Using makefiles is a straightforward approach. For every application, you explicitly spec-
ify the set of ConcreteProduct classes which are to be linked. You can do so by issuing
commands to the linker. Since dependencies between ConcreteProduct classes from dif-
ferent class hierarchies might exist (covariant redefinition), be careful not to forget de-
pendent classes.

– Using source code to configure systems is straightforward as well: You might simply
write a configuration operation in the system’s root class, the main application class, or
close to the main operation which references the classes required to be linked once. The
linker will take care then that the right classes are linked to the final executable.

– Using register objects. If you want to support Product Trader for all classes linked to the
system you should consider using Register Objects. An object of a register class is re-
sponsible to add a ConcreteCreator object with a specification to the Product class.

– Using configuration scripts. In large projects, where a lot of applications are developed, it
is indispensable that the configuration of the system can be understood easily. When us-
ing Product Trader in C++, we recommend the use of configuration scripts. The goals of
configuration scripts are:

* to represent one place that describes the configuration of the system.

8

* to reference all needed ConcreteProduct classes, so that the linker includes them into
the application.

 An easy way to satisfy these goals is to create the ConcreteCreator and Specification ob-
jects inside a configuration script and add these objects to the Product class depending on
the needed configuration of the system. The Sample Code section presents some exam-
ples.

• Providing convenience operations. You can use the abstract Product class to hide the imple-
mentation of a specification as an instance of a dedicated Specification class. The client sim-
ply calls the createFor operation with parameters which are native to the specification, and
the implementation of createFor in the Product class converts these parameters into a Specifi-
cation object.

• Providing initialization parameters. Sometimes objects require elaborate initialization pa-
rameters which must be available during the early object building process. These parameters
can be packaged into the Specification objects, or they can be passed along a chain of opera-
tion calls which then must provide matching parameter lists (which asks for code generation
as discussed above).

• Consider dynamic link libraries explicitly. Classes from dynamically linked libraries are not
directly accessible, simply because they are not contained in the runtime image. However, the
creator objects are usually very lightweight. They are therefore a fine means of representing
not yet loaded classes. The creation procedure of a creator for a class in a dynamically linked
library might have to load that class first, but this might be exactly what you want. Creators
and the ProductTrader can be used effectively to hide the factoring of large applications into
DLL’s on the expense of having to deal with complex configurations issues.

SAMPLE CODE

Instantiating objects from a stream

As a first example, we will present a simple implementation using prototypes as Creators and a
dictionary as the mapping from Specification to ConcreteCreator. The dictionary is maintained
by the Product class.

Assume you are reading objects from a stream. A leading string indicates the class of the object
to be read. Thus, the class name represents the specification for the class to be instantiated, and
we use Product Trader to do so.

Serializable is the abstract Product class for all objects that can be read from a stream.
String is the specification type, and we assume that every subclass of Serializable can provide
a prototype.

The Serializable class might then implement createFor like this:

Serializable* Serializable::createFor(String& className) {
 Serializable* prototype = lookup(className);
 return prototype->clone();
}

9

Lookup simply retrieves the prototype for a given class name from a dictionary maintained by the
Product class (a static member variable in C++ or a class variable in Smalltalk):

Serializable* Serializable::lookup(String& className) {
 return mapping[className];
}

A simple configuration scheme might be to make the prototypes register themselves at the Se-
rializable class during system startup time (when the prototypes are created):

Customer::Customer(CustomerPrototypeConstructorIndicator* dummy) {
 Serializable::addCreator(this);
}

Serializable implements addCreator by using the class name to put the prototype into the dic-
tionary:

Serializable::addCreator(Serializable* prototype) {
 mapping[prototype->getClassName()] = prototype;
}

This implementation uses prototypes as Creators, a simple built-in value type specification, and a
static registering and configuration scheme. It is a rather lightweight approach which works well
if Product Trader is to be applied to single class hierarchies with only simple specification re-
quirements.

Configuring widgets for value types

As a second example we will use C++ templates to illustrate an implementation of the introduc-
ing domain widget and value problem. In this example, specifications are realized by C++
typeid’s denoting the class of the DomainValue. The configuration scheme of the system is
realized by configurations scripts. The mapping from the Specification to the Creator is realized
by a simple dictionary.

We use the templates from the Implementation section:

DomainWidget* DomainWidget::createFor(DomainValue* aValue) {
 Creator<DomainWidget, type_info&>* aCreator = mapping[typeid(aValue)];
 return aCreator->create();
}

DomainWidget::addCreator(Creator<DomainWidget, type_info&>* aCreator) {
 mapping[aCreator->getSpecification()] = aCreator;
}

We use the templates from the implementation section to configure the DomainWidget class.
It maps the typeid of the DomainValues to the Creator object for the DomainWidgets:

StandardDomainWidgetConfiguration() {
 ...
 // map Amount on AmountWidget
 DomainWidget::addCreator(
 new ConcreteCreator<DomainWidget, AmountWidget, type_info&>(
 typeid(Amount)));
 // map Currency on CurrenyWidget
 DomainWidget::addCreator(
 new ConcreteCreator<DomainWidget, CurrencyWidget, type_info&>(
 typeid(Currency)));
 ...
}

10

If we want to offer a new configuration for an application we only have to write an new configu-
ration script to make the required changes. As an example, consider a credit application which
uses a special domain widget for the domain value Amount. To add the new widget to the appli-
cation, you have to implement the new domain widget and then use a configuration script to reg-
ister it. The new configuration script might look like this:

CreditConfiguration() {
 ...
 // use the specific CreditAmountWidget for the domain value Amount
 DomainWidget::substituteCreator(
 new ConcreteCreator<DomainWidget, CreditAmountWidget, type_info&>(
 typeid(Amount)));
 ...
}

The system’s root object, or the main operation, must call the DomainWidgetConfigura-
tion and the CreditConfiguration operation to install the necessary Creator objects.
Only these calls are needed, no further code changes are required.

Using a general ProductTrader

As a final example, we will use Smalltalk to implement a full ProductTrader that can be reused
by every class hierarchy that wants to provide Product Trader at its root for any number of differ-
ent specifications. This example is derived from [Riehle+96] where a more detailed discussion
can be found. This implementation uses a general ProductTrader which maintains a picture of the
semantics of all classes in the system by means of specifications. The ProductTrader organizes
these specifications so that it can easily lookup the classes matching a given specification.

Every Product class can provide convenience operations for Product Trader which are imple-
mented in terms of the system-wide ProductTrader, a Singleton. Classes take over the role of
Creators, Specifications are implemented as subclasses of a general Specification class, and the
ProductTrader is realized by the ProductTrader just introduced.

The ProductTrader provides a mapping from a specification to a class object for every
specification type. Specification types are represented by the classes in a Specification
class hierarchy. The mapping is implemented as a dictionary which takes a Specification instance
as a key and returns a collection of all classes that match the specification. Since the specification
type is represented as a class, it can be used in a further dictionary to retrieve the dictionary con-
taining the specification to classes mapping.

The ProductTrader has two main lookup methods:

ProductTrader>>getSpecificationDictionary: aClass
 "returns dictionary representing a specification to classes mapping"
 (self specTypeDict includesKey: aClass)
 ifTrue: [^self specTypeDict at: aClass]
 ifFalse: [^nil]

ProductTrader>>getClassCollection: aSpecification
 "returns collection of classes matching aSpecification"
 | specDict |
 specDict := self getSpecificationDictionary: aSpecification class.
 (specDict includesKey: aSpecification)
 ifTrue: [^self specDict at: aSpecification]
 ifFalse: [^nil]

11

The first method returns the mapping dictionary for a given specification type, and the second
method returns a collection of all classes matching the given specification. The implementation
of createFor becomes a simple two stage retrieval process now. A product class, for example
DomainWidget, simply does the following:

DomainWidget>>createFor: aDomainValue
 "create Specification instance and delegate to ProductTrader"
 | aSpecification |
 aSpecification := DomainWidgetSpecification new: aDomainValue class.
 ^self ProductTrader createFor: aSpecification

ProductTrader>>createFor: aSpecification
 "create object for given specification"
 | classCol |
 classCol := getClassCollection: aSpecification.
 (classCol notNil)
 ifTrue: [^classCol first new]
 ifFalse: [^nil]

The actual problem is how to set up the dictionaries so that the retrieval and creation process can
be carried out easily. This is a two step process. In the first step, the ProductTrader collects all
classes from the Specification class hierarchy. In the second step, it calculates the mapping for
every Specification class; this is done by traversing the product class hierarchy as indicated by
the Specification class, and by creating a Specification instance for every Product class.

This process is based on information which has to be provided by the specification classes them-
selves. Thus, Specification declares the following class and instance methods:

Specification class>>getProductClass
 "returns Product class"
 self subclassResponsibility

Specification class>>newFromClient: anObject
 "used by clients which supply the specification information"
 self subclassResponsibility

Specification class>>newFromManager: aClass
 "used by ProductTrader to instantiate spec for a ConcreteProduct class ”
 ^super new adaptTo: aClass

Specification>>adaptTo: aClass
 "adapts spec instance to given product class"
 self subclassResponsibility

Specification>>matches: aSpecification
 "matches with another specification"
 ^(self class = aSpecification class)

These methods must be overwritten by subclasses in order to fit a certain specification’s seman-
tics. For DomainWidgetSpecification, this leads to the following code:

DomainWidgetSpecification class>>getProductClass
 ^DomainWidget

DomainWidgetSpecification class>>newFromClient: aDomainValueClass
 self domainValueClass: aDomainValueClass

DomainWidgetSpecification>>adaptTo: aDomainWidgetClass
 self domainValueClass: aDomainWidgetClass getDomainValueClass

DomainWidgetSpecification>>matches: aSpecification
 (super matches: aSpecification) ifFalse: [^false].
 ^(self domainValueClass = aSpecification domainValueClass)

DomainWidgetSpecification>>hash

12

 ^domainValueClass symbol

When created by a client or a convenience operation of DomainWidget, the DomainWidget-
Specification instance receives the DomainValue class the new DomainWidget instance will
have to fit. When created by the ProductTrader, the DomainWidgetSpecification instance is cre-
ated for a specific DomainWidget class which it asks for the DomainValue class it has been
written for. The last method is used to build the mapping of domain values to domain widgets.
The ProductTrader traverses the DomainWidget class hierarchy, creates a DomainWidgetSpeci-
fication instance for each class, and puts the class into the mapping dictionary with the specifica-
tion instance as the key. The hash method then maps a client created DomainWidgetSpecification
instance on a collection of DomainWidget classes.

This approach is based on the assumption that the specification instance is able to retrieve
enough information from the Product class to serve as a key in the mapping. In our example, the
DomainWidget class provides a getDomainValueClass method which returns the do-
main value class. If this is not an option, the class semantics of Product classes must be specified
external to that class, for example in a database.

This approach lets us introduce new specifications simply by introducing a new specification
subclass. Implementing Product Trader for object streaming as shown in the first example can be
done by creating a ClassSymbolSpecification which looks like this:

ClassSymbolSpecification class>>getProductClass
 ^Object

ClassSymbolSpecification class>>newFromClient: aSymbol
 self classSymbol: aSymbol

ClassSymbolSpecification>>adaptTo: aClass
 self classSymbol: aClass symbol

ClassSymbolSpecification>>matches: aSpecification
 (super matches: aSpecification) ifFalse: [^false].
 ^(self classSymbol = aSpecification classSymbol)

ClassSymbolSpecification>>hash
 ^classSymbol

The general ProductTrader is a mighty approach for avoiding the hard-coding of creation de-
pendencies in the class implementations themselves. It has served us well in making our frame-
works easier adaptable and configurable.

KNOWN USES

The first example in the Sample Code section, creating objects from a stream, can be found in
almost every application framework which provides streaming support. It requires the mapping
from some class identifier, for example the class name, to an object which is capable of instanti-
ating this class. You can implement the specification as a string representing the class name, the
creator objects by some class object or prototype, and the mapping as a dictionary which maps
the class name on the object representing the class. For example, the ClassManager of ET++
[Weinand+94] implements Product Trader by maintaining class objects in a dictionary, and so do
the Tools and Materials Metaphor Frameworks [Riehle+95, Riehle+96].

Next to this very frequent but specialized application, Product Trader is often used to select a
subclass as a specific implementation of the abstract Product class which fulfills certain criteria,

13

for example performs very fast or uses only a limited amount of memory resources. Lortz and
Shin [Lortz+94] implement Product Trader according to Coplien’s generic autonomous exemplar
idiom [Coplien92]: The Product class maintains a list of prototypes for each of its subclasses; it
uses strings as a specification mechanism; and it traverses the list matching each prototype with
the specification. Lortz and Shin use Product Trader to select container classes based on per-
formance requirements in the context of a real-time database system.

The most interesting application of Product Trader, however, is the creation of objects from one
hierarchy depending on objects from another hierarchy, as demonstrated by the introducing ex-
ample. In the Tools and Materials Metaphor frameworks [Bäumer+97, Riehle+96, Riehle+95],
we have made extensive use of the pattern to map hierarchies onto each other. We instantiate
widgets depending on value types, we instantiate user interface parts depending on domain mod-
els, we instantiate tools depending on the materials they have to work on, and we instantiate do-
main components depending on other domain components.

All these tasks are carried out on the level of abstract classes. This helped us achieve a degree of
decoupling that significantly eased system evolution and configuration. Product Trader is an im-
portant asset in making the frameworks consisting of more than 2000 classes adaptable, config-
urable and, eventually, manageable.

RELATED PATTERNS

The global ProductTrader is a Singleton [Gamma+95]; Product Trader is used to create objects
from a stream in the Atomizer pattern [Riehle+97]; Convenience operations (used to encapsulate
complex Specification objects) are an example of the Convenience Method pattern [Hir96];
Product Trader is used to create ConcreteExtension objects for ConcreteSubject objects in the
Extension Objects pattern [Gamma97].

Product Trader serves as a companion to Factory Method [Gamma+95]. Product Trader works
well where Factory Method works poorly and vice versa. Factory Methods often introduce cyclic
dependencies between the Product and the Creator, in particular if the Product is going to work
on the Creator later on. This is the case with applying Factory Method in the introductory exam-
ple where a value object would create a widget object. This is the case with a container creating
its iterators. This is the case with a model object creating its views. If a different product is re-
quired, the creator has to be changed. The widget class, the container class and the model class
would have to be changed. Furthermore, no two different products can coexist and be selected
due to some dynamic selection criteria.

We think of Product Trader as a third fundamental creational pattern next to Factory Method and
Prototype.

ACKNOWLEDGMENTS

We wish to thank our shepherd and the participants of the writer’s workshop at PLoP ’96 for
their helpful comments.

14

REFERENCES

[Bäumer+97] D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, C. Riehle, and H. Züllighoven.
“The Tools and Materials Metaphor Series of Frameworks.” Submitted for publication.

[Coplien92] J. O. Coplien. Advanced C++: Programming Styles and Idioms. Reading, MA: Ad-
dison-Wesley, 1992.

[Gamma97] E. Gamma. “Facet.” This volume.

[Gamma+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Design. Reading, MA: Addison-Wesley, 1995.

[Lortz+94] V. B. Lortz and K. G. Shin. “Combining Contracts and Exemplar-Based Program-
ming for Class Hiding and Customization.” In Proceedings of OOPSLA ’94, ACM SIGPLAN
Notices 29, 10 (October 1994): Page 453-467.

[Riehle+95] D. Riehle and H. Züllighoven. “A Pattern Language for Tool Construction and Inte-
gration Based on the Tools and Materials Metaphor.” In J. O. Coplien and D. C. Schmidt (eds),
Pattern Languages of Program Design. Reading, MA: Addison-Wesley, 1995. Page 9-42.

[Riehle+96] Dirk Riehle, Bruno Schäffer, and Martin Schnyder. “Design of a Smalltalk Frame-
work for the Tools and Material Metaphor.” Informatik/Informatique (February 1996). Page 20-
22.

[Riehle+97] Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, Heinz Züllighoven.
“Serializer.” This volume.

[Weinand+94] André Weinand and Erich Gamma. “ET++ — a Portable, Homogenous Class
Library and Application Framework.” In W. R. Bischofberger and H.-P. Frei (eds.), Proceedings
of the Ubilab Conference ’94, Zürich. Konstanz: Universitätsverlag Konstanz, 1994. Page 66-92.

Copyright © 1997 Dirk Bäumer and Dirk Riehle. All Rights Reserved.

Dirk Bäumer works for RWG GmbH, Germany. He can be reached at RWG GmbH, Räpplen-
straße 17, 70191 Stuttgart, Germany. He is interested in object-oriented frameworks, software
architecture and distributed systems. He welcomes e-mail at Dirk_Baeumer@rwg.e-mail.com or
baeumer@informatik.uni-hamburg.de.

Dirk Riehle works at Ubilab, the information technology research laboratory of Union Bank of
Switzerland. He is interested in object-oriented frameworks, software architecture and distributed
systems. He can be reached at Union Bank of Switzerland, Bahnhofstrasse 45, CH-8021 Zürich.
He welcomes e-mail feedback at Dirk.Riehle@ubs.com or riehle@acm.org.

