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Abstract. The wide spread of object technology has
strongly increased the requirements for quality and
functionality of programming environments. In this paper
we discuss the reasons for this and work out the concrete
demands for browsing, editing and executing large object-
oriented software systems. We consider how to meet these
requirements with available technology, and what we can
expect in the future.
Much of our experience is based on the development and
use of the C++ programming environment Sniff. Therefore,
our discussion is focused on C++. Nevertheless, most of our
conclusions are valid for other programming languages,
too.
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1 . Introduction1

For several years we have been engaged in the
development of large object-oriented software systems
based on the ET++ application framework [Wei88],
[Wei89]. Working with an editor, a compiler, and a
debugger, this was difficult and often tedious. Hence, we
developed a class browser, hoping it would help us to
get a better overview of our software systems. The first
prototype was internally used and so successful that we
added development tools until we had a full-fledged C++
programming environment called Sniff. At the end of
1992, Sniff became a commercial product which is now
available for most UNIX platforms2. Since then we
have been working on the Beyond-Sniff project, a

1Published in Software–Concepts and Tools, Vol. 15,
No. 2, Springer Verlag 1994.

2The product version of Sniff (SNiFF+) is free for
universities and can be downloaded by ftp from eunet.co.at
(/pub/vendor/takefive) or from self.stanford.edu
(/pub/sniff).

platform for cooperative software development
(CSCSE).

After the completion of Sniff we began to reason on
our experience with programming environments for
object-oriented languages and what is of general interest
in this context. We present the results of this process
here, viz. discussions of:
• the impact of object-oriented programming on the

requirements for a programming environment
(section 2),

• what browsing really is and which aspects of a
software system are amenable to browsing (section
3-7),

• what support is necessary for the modification of a
software system (section 8),

• the requirements for executing and debugging
software systems (section 9),

• approaches for the management of large software
systems (section 10),

• implementation aspects which significantly
influence the quality of a programming environment
(section 11).

We illustrate our theoretical considerations with
examples taken from Sniff.

Our concrete experience is derived from C++
programming environments. The statements in this
paper primarily relate to these environments. Most of
our conclusions are also valid for programming
environments for other languages. For the sake of
brevity, we restrict ourselves to the functionality that
can be provided based on source code. We also refrain
from specifying general quality criteria, unless it is of
particular interest.

1.1 Definition
We consider a tool or a tool set to be a programming
environment if the tool:
• manages the components of a software system, ie,

pieces of source code,
• extracts information contained in the source code and

presents it appropriately,
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• supports modification of the source code,
• constructs and executes the software system and

presents information related to the execution.
As a further important requirement, a programming
environment should support team-work. Since team-
work is not yet well understood, we have not included
this requirement in the definition, and we will only
touch team-work in the sequel.

2 . General Requirements due to
Object-Oriented Programming

The concepts of object-oriented programming have
significant influence on the requirements for a
programming environment. Inheritance and
polymorphism make an object-oriented software system
less readable in a linear way than a system written in a
procedural style. This is aggravated by the fact that
objects respectively classes are relatively small units.
Code reading therefore requires frequent context
switches, which is a challenge to the navigational
capabilities of the programming environment.

Many aspects of an object-oriented system emerge
only at run-time. Therefore, a programming
environment has to support the inspection of objects
and object graphs at run-time, in cooperation with a
debugger.

Conventional software engineering is based on the
assumption of a more or less sequential development
process. This approach is generally known as the
“waterfall model” [Boe76]. Experience has shown that
this development process is not adequate for object-
oriented systems. To illustrate this, we consider two
essential tasks in object-oriented software development,
namely using and developing reusable components.

The key advantage of object-oriented software
development is that it does not start from scratch but
builds on reusable building blocks and frameworks. A
framework not only contains reusable components but
also embodies an abstract architecture. The concrete
domain-specific classes have to be embedded in this
architecture. This requires a thorough knowledge of the
architecture and how the framework classes interact with
the domain specific classes, which necessitates
intensive inspection of the corresponding
implementation. As a consequence, the amount of
source code a developer has to browse increases
significantly which asks for an efficient programming
environment. In addition, the use of frameworks
belittles the importance of the design phase in the
classic sense, because a framework already represents an
abstract design. The primary task is to become familiar
with a framework in order to derive and embed domain
specific classes. For this reason, the browsing
capabilities of programming environments get
increasingly important. More information on
frameworks can be found, eg, in [Joh88] and [Sch86].

Experience has shown that reusable building blocks
and frameworks cannot be developed in a sequential top-
down fashion. Johnson writes in [Joh88]: “…useful
abstractions are usually designed from the bottom up,
ie, they are discovered not invented”. Useful
abstractions are likely to be discovered only after a set
of implementations of several similar classes. This
leads to the creation of an abstract class, and subsequent
modification of its derived classes. Thus, design and
programming are closely coupled and carried out
iteratively. According to our experience, this activity is
mostly carried out in the programming environment.

We conclude that the requirements for object-oriented
programming environments regarding navigation and
visualization of information, as well as the
requirements for time and memory efficiency, are
significantly higher than for environments for
conventional procedural languages. This conclusion is
illustrated by the fact that developers of object-oriented
programs typically spend much more time studying and
restructuring than writing code.

3 . Browsing Software Systems

Reading and understanding code is one of the main
activities of a software developer. Goldberg writes in
[Gol87]: “We read programs in order to learn to write,
we read to find information, and we read in order to
rewrite.” The main goal of a programming environment
is to optimally support the developer with this
information retrieval, in the following called browsing.

There are two distinct ways to browse source code,
namely top-down browsing and bottom-up browsing.

A developer browses a software system top-down to
learn more about its structure. A developer of an object-
oriented software system can learn about classes, their
interfaces, their relationships among each other, and
their implementations. To accomplish this task, a
programming environment has to collect the necessary
information from the source code, condense it, and
present it appropriately.

A developer browses a system bottom up to learn
more about a certain entity in the program, its purpose,
and its embedding in the software system.
Understanding a certain piece of code requires, for
example, knowing what variables are of which type,
where they are declared, where they are referenced, which
functions are called, and what the definitions of these
functions are. During bottom-up browsing, a
programming environment has to visualize this
implicit hypertext structure and support its traversal.

Browsing a software system not only means for a
programming environment to answer the corresponding
questions but also to provide appropriate navigation
aids. In this context, it is of interest what queries are
feasible and how the information required to provide
efficient browsing options can be acquired and managed.
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The following three sections discuss the requirements
and solutions for various browsing tasks: browsing
definition and usage of symbols (Section 4), browsing
classes (Section 5), and browsing object-oriented
applications at run time (Section 6). Section 7
discusses aspects that are relevant for the browsing
tasks presented in sections 4 through 6.

4 . Browsing Definition and Usage of
Symbols

During bottom-up browsing, a developer needs to know
where a symbol (ie, symbol table entry such as a class
or variable) is defined and where it is used. Providing
this information makes the implicit hypertext structure
of a software system explicit. The C++ browser Dogma
[Sam90] provides a user interface that is a good example
for this particular notion of a hypertext.

Conceptually, it is straight forward to retrieve and
present the information about the locations where
symbols are defined and used. The information can be
retrieved from the symbol table or extracted from the
source code on demand.

Programming environments can be distinguished on
how they support a developer who does not know
exactly what he or she is looking for, on how they
support a developer in filtering large amounts of
information, and on how they present the information.

Most programming environments neglect the fact
that at the beginning of a query, the developer often
does not know exactly what he or she is looking for
(especially during top-down browsing). As a
consequence, it is important that the environment can
handle general queries which can be refined
incrementally.

A programming environment has to provide
appropriate filter mechanisms to help a developer to
find his way through large amounts of information.
Filters can be based on regular expressions, information
about the context of a location in the source code,
information about the project structure (see 10.1), etc.

The presentation of information is a matter of the
user interface and an important issue. For the sake of
brevity, however, we will not discuss it in further
detail.

Solution Implemented in Sniff
Every Sniff browser presents the result of a query.
Queries about the definition of a symbol can be based
either on exact matches or on regular expressions. The
result of regular expression based query are all symbols
of a certain type, the name of which matches the regular
expression. This allows a developer to ask questions
such as: show me all classes the name of which
contains the string “menu”.

The starting-point for Sniff's cross-referencing is that
conventional cross-referencing is too specific. In

conventional systems, a developer can ask, for example,
where a certain variable is referenced. But he or she will
not find out whether there are similar variables or where
a variable is mentioned in a comment. Therefore, we
developed fuzzy cross-referencing for Sniff. The idea is
to retrieve, in a first step, all locations that match a
regular expression. If the result is too extensive, the
developer may apply semantic filters in a second step.
Semantic filters are also based on regular expressions.
A typical example for a semantic filter is: show only
those positions where something occurs in the context
of an assignment or a comparison.

With this two-step approach we can achieve almost
the same results as with conventional cross-referencing,
but we can do more. An example is searching for the
string “menu” in an application framework. As a result
we get hundreds of positions in the source code. If in
the second step the assignment filter is applied we get
all positions where something is assigned to a variable
whose name contains “menu”. As long as variables
referencing objects have reasonable names, this query
returns (among others) all locations where a reference to
a menu object is assigned to a variable. Experience with
this type of query has shown that we can achieve
amazing results in various object-oriented libraries.

Static Call Graphs
Static call graph browsers visualize usage relationships
between functions. In a procedural software system the
static call graph is the only meaningful information
about the cooperation of components. This graph can be
reasonably visualized in two dimensions.

In object-oriented software systems, member
functions (methods in Smalltalk terminology) usually
are bound dynamically. When calling an operation on
an object, the selection of the member function to be
executed depends on the type of the object. As a
consequence, the call graph has to show all possible
variants. The graphical presentation of the call graph,
therefore, gets usually so messy that it is worthless for
a developer. Nevertheless, the programming
environment should be able to show which functions
could be executed on the invocation of a dynamically
bound member function.

5 . Browsing Classes

Studying the source code of a class is not sufficient to
comprehend a class. We need to know its base classes
and all classes that cooperate with it. This information
may be distributed across any number of files but
logically belongs together. The programming
environment should be able to present the information
as one coherent unit.
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5.1 Browsing the Inheritance Graph
In order to gain an overview of a class library it is
useful to graphically visualize the inheritance graph.
Unfortunately, a simple drawing of the graph becomes
unwieldy if a class library comprises hundreds of
classes.

A common solution to this problem is that the user
specifies a particular class and then a specific subgraph
he or she wants to see. In our opinion, this solution is
not satisfactory because it requires too much user
interaction.

There must be a better way to restrict the number of
classes visualized. We propose to provide filters to pick
out the classes of interest.

Possible filters are:
• Use the information contained in the inheritance

graph itself (eg, focusing on a certain class family,
ie, an abstract class and all derived classes).

• Use regular expression matching on class names.
• Use library information (eg, focusing on the classes

of a certain library).
• Use design information, such as design patterns

[Gam92], to restrict the inheritance graph.
Additional information can be visualized in an
inheritance graph by blending it with function and data
members (in Smalltalk terminology instance/class
method and instance/class variable) of particular classes.
We think that this is a good idea, but it leads to useful
visualizations only if the set of shown members can be
restricted in a simple and straightforward way. If this is
not possible, the overview is quickly lost.

Solution Implemented in Sniff
Sniff's hierarchy browser visualizes a class hierarchy as
a graph. The user can restrict the classes in a graph as
follows:
• to a class family, ie, a class together with its derived

classes,
• to the classes of a certain project1,
• or to all classes whose name matches a regular

expression.
In addition it is possible to explicitly hide subgraphs.

The visualization of a class family is no problem
since it is just a subgraph. Difficulties may arise,
however, if the classes of certain projects are hidden:
this may lead to disruptions in the graph, because
classes which are hidden may be parents of classes
which are still visible. The empirically found solution
for this problem is to avoid hiding abstract classes,
whereby the skeleton of the graph is preserved. Hidden
concrete classes that have derived visible classes are
contracted to a dot. With this solution, it is possible to
grasp the meaning of a large class graph or parts thereof

1Sniff allows to aggregate files into projects and to build
up a software system as a tree of projects (see also section
10)

quite efficiently. However, a prerequisite is that abstract
classes are marked (ie, in C++ by defining at least one
pure virtual function.)

Another important aspect that can be visualized in a
class graph is the overriding of member functions. In
the hierarchy browser, all classes of a class family or all
classes that define a certain member function can be
marked.

Possible Enhancements
Reasonable further solutions require the availability of
design knowledge that cannot be extracted from the
source code. For example, it is desirable that the
developer can explicitly define protocols (in Smalltalk
terminology method categories). A protocol is an
aggregation of methods that implements a certain
functionality for an object (eg, layout,
activation/passivation etc.). On the basis of protocols
all classes that override member functions of a protocol
could be marked. These protocols could also be used for
the selection of member functions to be shown in the
class graph.

5.2 Browsing a Class with its Base Classes
The study of a class is centered around its defined and
inherited members (member functions and data
members). In order to gain overview of all members of
a class, its members have to be merged with the set of
all inherited members by flattening the inheritance
hierarchy. It must also be possible to apply filters.

If a language has a notion of access rights for
members then this has to be taken into account as well.

Solution Implemented in Beyond-Sniff
Beyond-Sniff's2 class browser supports the flattening of
a class hierarchy. Figure 1 shows a class browser,
focused on the class Collection. The list in the middle
contains all members and the structure view below
display the inheritance hierarchy.

The two icons in the list of member functions
visualize the following information:
• The first icon indicates whether the member

function overrides a member function of a base class
(triangle pointing left) and whether the member
function is overridden in a derived class (triangle
pointing right).

• The second icon visualizes further attributes of a
member function. A circle indicates a “regular”
member function, a triangle indicates a virtual one,
and a square indicates a static one.

• The shading of the geometric objects visualizes the
access rights of the member function. White means

2Beyond-Sniff is a platform for the development of
cooperative software engineering tools. Based on this
platform we developed Beyond-ClassBrowser, which is
similar to Sniff's class browser but provides substantially
refined filtering mechanisms.
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“public”, gray means "protected", and black means
“private”.

Basically, the following filters can be applied to the list
of members:
• Restriction to a subset of members (method

category) defined in the class graph.
• Restriction to all members whose name matches a

certain regular expression.
• Hiding of overridden methods.

protected,
non virtual
member
function

public,
virtual
member
function

member
function
overrides,
is overridden

member
function
overrides

Figure 1.  Beyond-Class Browser

Furthermore, five different views can be displayed by
selection from the pop-up menu above the member
function list:
• all: all members defined in the class and inherited

from its base classes,
• class interface: all members that can be referenced in

methods of this class (ie, all members of this class
and all public and protected members of its base
classes),

• derived interface: all members that can be referenced
in a derived class (ie, all protected and public
members of this class and its base classes),

• overrider interface: all overridable member functions
(ie, all protected and public virtual members of this
class and its base classes),

• client interface: all members that can be referenced
anywhere (ie, all public members of this class and
its base classes).

Possible Enhancements
When a developer studies a class and its base classes he
or she is often confronted with a large number of
methods. An aggregation of member functions into
protocols as mentioned in section 4.1 would be helpful.
For example, a browser can then display only the
member functions that belong to a certain protocol.
This functionality is already implemented in the
Beyond-Sniff browser as shown in figure 1.

5.3 Browsing other Relationships between
Classes

Besides inheritance information there is a number of
other interesting relations between classes. On a lower
abstraction level these are “use” and “contains”
relationships, as described in [Boo94]. Relations like
these can be extracted from the source code and
graphically visualized, eg, by means of Booch diagrams.
The difficulty is how to cope with the large amount of
information. Although most programming
environments extract the necessary information, we do
not know of any that also visualize it.

On a higher abstraction level there are descriptions
and visualizations of the cooperation between classes in
the form of contracts [Hel90] and design patterns
[Gam92]. Such tools are currently under development,
but we do not know of any results that can be used in
practice.

6 . Browsing the Application at Run-
Time

An object-oriented software system comprises a
multitude of cooperating objects that often form a
complex object graph. A good example is the
implementation of graphical user interfaces with the
ET++ application framework, where the user interface is
realized by a hierarchy of visual objects. This hierarchy
is defined by a “contains” relationship that is established
dynamically and determines the forwarding of events,
which can only be understood at run-time. The
visualization of such structures is an indispensable aid
for a developer.

Intuitively, one tends to assume that object graphs
are preferably visualized graphically. However,
experience has shown that this is reasonable only in
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rare cases and only if additional knowledge is available
to filter the wealth of information.

The support provided in existing programming
environments for filtering run-time information is
insufficient. Usually, they merely allow navigation
through dynamic data structures one step at a time,
following pointer references.

Solution Implemented in Sniff
Sniff does not provide tools of its own to visualize
objects at run-time. However, Sniff is tightly integrated
with the ET++ run-time browsers. Therefore, all
necessary information for ET++ applications can be
visualized exemplary.

The ET++ inspector (figure 2) lets a developer
quickly gain an overview of all objects of a certain
class. The top left view lists all known classes. The
number in brackets following the class name indicates
the number of currently existing instances. If a class is
selected, all objects of this class are displayed in the
middle list. If an object is selected, it is displayed in the
large subview together with its instance variables. The
right list serves to display all objects that reference the
currently selected object. Object graphs can be inspected
by selecting an instance variable, whereupon its
referenced object is loaded into the large subview.

linked classes with
number of instances

instances of
selected class

objects referencing
selected instance

data members
of selected instance
(ordered by inheritance)

Figure 2.  ET++ inspector

For certain objects there is additional information
available, by means of which particular object graphs
can also be visualized graphically. This holds, for
example, for ET++ container objects and objects used
for the creation of graphical user interfaces. Figure 3
shows the visualization of the object graph representing
the ET++ inspector shown in figure 2. This graph
marks explicitly how events from the TextItem object
are forwarded and which objects can handle these events.

Additional information about this run-time browser
developed by Erich Gamma can be found in [Gam89]
and [Bis92/2].

Possible Enhancements
The currently available functionality of Sniff in
cooperation with the ET++ inspectors for inspection
and visualization of object graphs proved very valuable.
Nevertheless, this solution has two basic drawbacks:
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• A developer cannot specify interesting relationships
dynamically and have them visualized at run-time.

• The ET++ inspector works only for ET++
applications. Moreover, the necessary meta-
information has to be manually supplied by the
developer, who has to write two macro calls for each
class.

Currently, we are working to overcome the first
disadvantage. The basic idea is that by means of a
dedicated tool a developer describes relationships of
interest between objects. Using this description, a
visualization tool generates the desired graphical
representation at run-time.

The second disadvantage is inherent to C++. The
language definition does not provide any meta-

information at run-time and therefore each programming
environment has to implement its own solution (eg
[Gam89]). It would be indisputably attractive if the
compiler provided meta-information at request. But as
far as we know, there is no compiler available that
provides sufficient information to implement tools
comparable with the ET++ inspectors. However, the
optimal solution would be, if the C++ standard would
define sufficient meta-information available at run-time.
The C++ standardization committee is currently
discussing run-time type information, but the proposed
support is not sufficient.

Figure 3.  ET++ object structure browser

7 . General Aspects of Browsing
Support

The homogeneity of the user interface and short
response times are major factors that contribute to the
overall quality of a programming environment. For the
sake of brevity, however, we will only address issues
related to browsing in this section. The first is how to
prevent situations where a developer loses overview.
The second issue concerns reading source code itself.

7.1 Keeping Track of Browsing States
During browsing a developer walks through a software
system in an arbitrary and seemingly chaotic way,
because answers often lead to new questions.
Attempting to answer an initial question can result in a
lot of new information. Since it is almost impossible
to remember all the details, it is crucial to be able to go
back to a browsing state to access the information
collected there. At the end of a browsing process, the
developer usually would like to return to the starting

point. Therefore, it is important that a programming
environment provides navigational support.

In many programming environments, like for
example Objectworks\Smalltalk [PAR90], a new
window is opened for every query result. From a user's
point of view, this is very unsatisfactory because at the
end of a browsing process there are innumerable
windows. To proceed with work, the user will have to
close these windows one by one, at the same time
losing direct access to the information found.

Solution Implemented in Sniff
We were aware of this problem when designing Sniff
and tried to avoid the opening of too many windows.
Therefore, Sniff tools use a single window, and the
developer usually creates only one instance of each tool.
The results of all queries are displayed in the tool's
window. A new instance of a tool is created only if the
developer wants to keep a certain state. Each tool
provides a history menu, which allows the user to
directly go back to earlier browsing stages.
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Possible Enhancements
In order to improve navigation it is important that the
developer can save any number of states which involve
more than one tool. This way the context for
understanding a certain aspect can be restored at any
time.

7.2 Reading Source Code
When browsing a developer will focus a major part of
his or her attention on reading source code. In the Sniff
project we made an important experience: at the
beginning we assumed that emphasizing specific
syntactic constructs would be futile. Nevertheless, we
implemented it, primarily because ET++ already
provided a simple code formatter. We were subsequently
rather surprised that users liked it, that they even felt
that they lost focus when switching to a normal editor.
The biggest effect was achieved by the introduction of
colored comments: these proved to be substantially
better noticed, and, to our surprise, encouraged
developers to insert more comments in the source code.
Comments are now also used for structuring purposes
(eg, the methods of a class are aggregated into protocols
and the comment names the protocol).

8 . Modifying Source Code

Source code can be modified on two levels. The lower
level comprises the usual text editing operations, eg,
inserting and deleting characters. The higher level takes
the semantics of the text into account.

8.1 Editing
The discussion about programming environments tends
to focus on the efficiency of editing. There is no doubt
that the quality of the editor is an essential part of the
overall quality. However, a developer spends only
relatively little time with the actual editing and therefore
the efficiency of the editor contributes only little to the
overall efficiency. Nevertheless, it is important that the
editor is seamlessly integrated with the rest of the
programming environment. In particular, it is essential
that the developer is always supplied with sufficient
information, even during major restructuring.

A common problem with editing is to globally
change names and structures. Manually renaming a
symbol, as for example a class or a member, can be
very time-consuming. Every location that references
this symbol has to be found and updated. This operation
is error-prone and its automation would be a big help
for the developer.

8.2 Refactoring
Object-oriented programming promises that reusable
software components can substantially increase the
productivity of software development and improve the
quality of the software. Even with object-oriented

programming, reusable components do not come for
free. Their production is a challenging task and requires
several redesigns of a class library, of a framework or
parts thereof. Experience shows that a developer spends
more time on redesign or restructuring than on the first
implementation. The most important tasks during
restructuring are:
• Introduction of abstract classes, where these serve as

new base classes for already existing classes. As a
consequence, instance variables and methods are
migrated to the abstract class and the derived classes
have to be adapted. Class families are built this
way.

• Classes which have too many responsibilities have
to be split up into several smaller classes. This is
the way class teams are built.

• Responsibilities (eg, of a class team) are newly
distributed.

These tasks are usually called refactoring. In doing so,
the source code is manipulated on a semantic level. As
an example, methods have to be moved between classes,
instance variables renamed, etc. With a simple editor,
this is very error prone. Tools which provide the
operations mentioned above should substantially
accelerate the development of reusable components.
Research has merely begun in this area (eg, [Joh93],
[Opd93]). Early results, however, give hope for a
significant increase in productivity in the development
of reusable software.

Due to the complexity of C++, we do not expect
applicable results for this language in the near future.
Hence, refactoring has to be done manually. During
refactoring, the software system often is in an
incomplete or inconsistent state. It is essential for
refactoring that the programming environment supports
browsing even then (see 11.1).

9 . Executing and Debugging the
Software System

As long as the typical programming environments
consisted only of an editor, compiler, and debugger, its
most important task was to execute and debug software
systems. In the meantime, weights have significantly
shifted, as was shown above.

Nevertheless, the quality of a programming
environment depends on how well testing and
debugging are supported. Important quality criteria are:
• How long does it take to execute a modified

software system again (edit-compile-go cycle)?
• What information is provided by the debugger?
• How well is the debugger integrated into the

programming environment? Ideally, the debugger
uses the programming environment's editor to
display the execution state and browsing features
should be available during debugging as well.
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Solution Implemented in Sniff
Sniff does not provide execution tools of its own. It
rather integrates the best suited compilers and debuggers
for a concrete project [Bis92]. Debuggers are integrated
using a generic user interface and an adapter architecture
that mimics the interaction between user and debugger.

Possible Enhancements
The functionality as described in section 6 could be
largely realized in the debugger, where it also belongs
conceptually. However, this requires intervention in
basic mechanisms of the execution, such as allocation
and deallocation of objects, which in turn demands a
common evolution of compiler and debugger. For C++,
we do not expect much progress in the near future.

1 0 . Management of Large Software
Systems

An important task of a programming environment is to
help a developer in the definition and control of all
artefacts belonging to a software system.

10.1 Definition of the Project Structure
Extensive software projects can comprise several
hundred thousands lines of code which usually are spread
over hundreds of files. The programming environment
is supposed to support the developer at defining and
managing the project structure. Essential information
is, what files belong to a project and what subprojects a
project consists of. There are two approaches defining a
project structure:
• Constructive, ie, a description contains all the

necessary information, how a target system is built
from its various parts. The most commonly used
constructive description is the UNIX makefile
[Fel79]. Programming environments can determine
all parts that belong to a software system by
examining such a description.

• Descriptive, ie, all parts belonging to a project are
explicitly defined by means of a tool.

The advantage of the constructive approach is that
already existing projects can easily be loaded into the
programming environment. The two most essential
disadvantages are that the makefile approach typically
manages only the information necessary for compiling a
software system and that one is tied to a certain
formalism that constrains flexibility and portability.

The advantage of the descriptive approach is that it
defines a logical view on a project, which can be used
for source code management as well as various other
things (eg, filtering of symbolic information).
Furthermore, it is easier to manage a hierarchical
project structure since the descriptive approach has more
degrees of freedom than the constructive approach.

Solution Implemented in Sniff
Sniff has an explicit definition of projects: a project
consists of a number of C/C++ source files and a
number of attributes (eg, writable, prelinked etc.). A
project can contain several subprojects, which
themselves are complete projects again. Figure 4 shows
the project editor of Sniff with the loaded project
“sniff.proj”.

A project needs only be defined once but it can be
reused as a subproject in any project where required.
Figure 4 shows two examples for reused subprojects,
namely the projects “symtab.proj” (symbol table) and
“et3.proj” (ET++ application framework)

writable
project

frozen
project

link
object
files

ignore
object
files

Figure 4.  Sniff project editor

Possible Enhancements
The information provided by an explicit project model
makes it easy to add additional functionality. Examples
are configuration management and version control
systems and the coordination of development teams. In
both cases the approaches available today are not
satisfying, what can be, among others, attributed to the
lack of a project concept in widely used programming
environments.
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Source code files are not the sole parts of a project.
An advanced project concept should also allow the
integration of documentation and other project relevant
artefacts.

10.2 Configuration Management and Version
Control

In addition to managing project structure, a
programming environment has to support a developer in
the control of source code. Most of today's tools provide
an interface to version control systems. The
functionality of this integration is usually restricted to
issuing commands for checkin and checkout from the
programming environment. We do not know, though,
of any programming environment which supports
versioning and configuration management sufficiently.

list of files
(who checked
out which 
version of
which file)

description of
the selected file

description of
revisons of
the selected file

project
structure

Figure 5.  Extended Sniff project manager

Solution Implemented in Sniff
Sniff is equipped with an adapter architecture that
enables a developer to integrate various version control
systems, such as SCCS [Roc75] and RCS [Tic85]. A
developer can trigger the checkin or checkout of a file in
the editor. Figure 5 shows the extended user interface of
the project manager. It allows to check in or out several
files at once and to study the modification history of
single files.

1 1 . Implementation Aspects

As mentioned above, a programming environment has
to extract information about definition and declaration of
symbols and their usage from the source code of a
project. It also has to keep that information ready for
quick access.

The concrete solution is mostly transparent for the
developer but the behavior of a programming
environment depends on the solution chosen. Therefore,
in the remainder of this section, we will briefly discuss
different approaches for the extraction and management
of information. For an in-depth discussion of these
aspects we refer to [Bis92].

11.1 Extraction of Information from the
Source Code

There are two important questions in this context:
• How is information extracted?
• What information is extracted?
For the extraction of information there are two
approaches: either the programming environment
provides a compiler of its own and uses the information
gained during compilation (symbol table etc.), or the
programming environment uses a dedicated parser that
extracts the necessary information.

Due to weaker requirements, a dedicated parser can be
implemented much easier. Moreover, such a parser is
significantly faster than a compiler. Therefore, it is a
lot easier to keep the information about a software
system always up-to-date.

Since a dedicated parser does not need to generate
object code, it can be much more error tolerant
compared to a compiler. Hence it can extract
information even from an incomplete or inconsistent
software system, which is essential during large
restructuring tasks.

Further advantages of a dedicated parser are high
portability and the possibility to integrate different
compilers in the programming environment.

A feasible solution to the efficiency problems of the
compiler approach would be to develop an incremental
compiler. Due to the complexity of C++ we do not
expect any results in the near future.

The basic goal of a programming environment is to
extract as much information as possible and to provide
efficient access to it. However, this can lead to
problems with large software systems (several hundred
thousand lines of code), because a large amount of
information has to be managed. For hundred thousand
lines of code we expect about 20 Megabytes of data.

This size can be reduced if some information is
extracted on demand. Using a compiler for this purpose
cannot be considered due to lack of efficiency, however.
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Solution Implemented in Sniff
Because of the arguments stated above we decided to
implement a small and efficient fuzzy parser in Sniff.
This dedicated parser runs in a separate process and
communicates with the remaining programming
environment using a simple protocol. Thanks to this
separation, the parser can easily be replaced. Thus, the
programming environment can be adapted with little
effort to new languages whose concepts are similar to
those of C++.

11.2 Symbol Table Management
Basically, there are two approaches for the management
of the extracted information: using a DBMS or a main
memory based data structure.

The advantage of a DBMS is that different tools can
flexibly access it, even if they are not running in the
same process. Moreover, the amount of information is
virtually unlimited and a DBMS offers a rich set of
information management functionality. Finally, a
DBMS provides a general purpose query processor and a
wealth of mechanisms for optimizing access.

Storing information after its extraction is relatively
time-consuming. Apart from that, the synchronization
of the tools with the database by change propagation is
comparatively difficult. After each information
extraction, all tools have to find out which information
in use has to be updated. Subsequently, all modified
information must be loaded again from the database.
This can be time-consuming.

Solution Implemented in Sniff
Sniff maintains the information extracted by the parser
in a symbol table in main memory. This was possible
only because we refrained from extracting all
information and storing it in the symbol table. Sniff
only extracts information about definition and
declaration of symbols. Thus the symbol table of Sniff
is by a factor of about 10 smaller than that of
programming environments that store all information.

Possible Enhancements
In the future it will be of great importance that different
tools can access the information base of a programming
environment in an object-oriented way. The current state
of the art leaves many problems unsolved, however. At
the heart of these are two questions: what is a tool's
view of the object graph representing the information
base and how can consistency be maintained while
objects are being modified.

12. Conclusions and Prospects

We have pointed out why object-oriented programming
increases the requirements for high-quality programming
environments. We have described the functionality
required, presented how it can be realized with current

technology (using Sniff as an example), and what
further development we can expect in the future.

We feel that the requirements are well understood
today. Nevertheless, it is challenging to implement a
good user interface and to provide sufficient
extendibility and efficiency.

The next step is to investigate how programming
environments can support development in teams. In
this context, the recent advances in global networking
have to be taken into account. This might allow
projects to be set up in which members of a team live
and work in geographically separate and remote
locations.

A programming environment which supports
cooperative software development at remote sites has to
know much more about projects, its relevant parts and
their internal structure. Such a programming
environment consists of a set of cooperating tools and
therefore has to provide communication components
which enable the tools to coordinate themselves, to
keep their data consistent, and to distribute the relevant
data to remote sites.

Therefore such a programming environment is the
ideal integration component for extensive software
development environments, since it provides the basic
communication and coordination infrastructure. It is
also able to manage the wealth of bits and pieces created
during the development process. Given the advances in
networking and distributed computing, we expect that
highly performant systems will reach the market within
the next few years.
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