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Abstract

Undeniable signatures are digital signatures which are not universally
veri�able but can only be checked with the signer's help. However, the
signer cannot deny the validity of a correct signature. An extended con-
cept, convertible undeniable signatures, allows the signer to convert single
undeniable signatures or even the whole scheme into universally veri�able
signatures or into an ordinary digital signature scheme, respectively.

In this paper we propose a new convertible undeniable signature
scheme and provide proofs for all relevant security properties. The scheme
is based on Schnorr's signature scheme and it is e�cient.

Unlike previous e�cient solutions, this new scheme can be used as a
basis for an e�cient extension to threshold signatures, where the capa-
bility of signing (and of verifying signatures) is shared among n parties
using a t out of n threshold scheme.

1 Introduction

The two most important properties of ordinary digital signatures are non-
repudiation and universal veri�ability. Non-repudiation guarantees that a signer
cannot deny his or her commitment to a message or a contract at a later time,
and the property of universal veri�ability allows everybody to check the cor-
rectness of a signature. However, for certain applications, universal veri�ability
is not required or even not desired. Therefore, the concept of undeniable signa-
tures was introduced by Chaum and van Antwerpen [5]. Undeniable signatures
are like ordinary digital signatures, with the only di�erence that they are not
universally veri�able. Instead, there exist (often interactive) protocols which
allow the signer to convince a veri�er about the validity or invalidity of a sig-
nature. Non-repudiation is still guaranteed, since the signer cannot convince
the veri�er that a correct signature is invalid or that an incorrect signature



is valid. Various realizations of undeniable signature schemes have been pro-
posed (see [5, 3]). Some concerns about the security of [5] have been discussed
in [9, 4, 17]. Moreover, a scheme based on fail stop signatures was suggested
[6] and non-interactive undeniable signatures have been introduced [18]. Harn
and Yang extended the concept of undeniable signature schemes to a threshold
model [14]: the capability of the signer is shared among n parties such that a
coalition of at least t parties has to co-operate to sign messages and to verify
signatures. They presented schemes for the cases t = 1 and t = n, however,
the latter was successfully attacked by Landau [19]. Recently, Lin, Wang and
Chang presented a solution that works with any t, 1 � t � n [20], but it is
awed as well, if signers are not assumed to be honest.

An extended concept of undeniable signatures, called convertible undeniable
signatures, was suggested in [2]. With a convertible scheme, the signer can con-
vert undeniable signatures into ordinary, i.e. universally veri�able signatures.
This can be done either selectively for single signatures or totally for the whole
scheme. Several realizations have been proposed: In [2], a secure but ine�cient
solution was presented. Practical schemes based on ElGamal signatures [10],
which have been proposed in [2] and [23], were shown to be insecure [22], and
the solution of [22] lacks detailed security proofs. A scheme proposed by van
Heyst and Pedersen [16] can be converted to fail stop signatures, but the key
length is linear in the number of signatures that can be signed. Two convertible
undeniable signature schemes that are secure w.r.t. forgery have been proposed
by Damg�ard and Pedersen in [8]. These schemes are also based on the ElGamal
signature scheme and on techniques for proving that an encrypted signature
is valid. One of them uses Rabin-encryption [25] and the interactive veri�ca-
tion protocols can be done e�ciently. The drawback is that the extension to a
threshold scheme is hard to obtain, as a suitable composite modulus must be
computed jointly. The second scheme uses ElGamal-encryption, which is some-
what ine�cient, as the veri�cation protocol requires several rounds to become
secure.

In this paper we present an e�cient convertible undeniable signature scheme,
which can be proved secure under reasonable cryptographic assumptions. In
this scheme, the signer cannot only selectively convert valid signatures into
digital signatures, but he or she can also convert any invalid signature into
an universally veri�able statement about this fact. The scheme is based on
Schnorr's signature scheme [26] and on an e�cient zero-knowledge protocol for
proving the equality or inequality of discrete logarithms. Furthermore, we show
how to extend this scheme to a threshold undeniable signature scheme. Very
recently, Gennaro, Krawczyk and Rabin suggested a scheme [13] that is as secure
as RSA with respect to forgery. It provides e�cient veri�cation protocols but
it's less suitable to be a basis of a threshold scheme as a trusted dealer is usually
involved to generate the composite RSA-modulus (see [12] for a threshold RSA-
scheme) 1.

Our paper is structured as follows: In Section 2 we describe the model of a
convertible undeniable signature scheme, then we present a building block which

1A way to compute an RSA modulus jointly is suggested in [1], but neither security against
an active attacker nor the use of strong primes is guaranteed.



will be used in our protocol. We present our solution in Section 4 and analyze
its security. Based on this solution we suggest a threshold scheme in Section 5.
Further extensions are discussed in Section 6.

2 Model

A convertible undeniable signature scheme consists of the following procedures.

� A probabilistic set-up algorithm Setup which returns the system parame-
ters P .

� A probabilistic key generation algorithm KeyGenP which, on input the
system parameters, returns a key pair (x; y), where x denotes the secret
key and y the public key.

� A (possibly probabilistic) signature generation algorithm SigGenP (m;x)
which, on input the secret key x and a message m, returns an undeniable
signature s on m.

� A (possibly interactive) veri�cation protocol VerP (m; s; y; x) between the
signer and the veri�er. The signer's input is the secret key x, the message
m and the `alleged' signature s, the veri�er's input is m; s and the public
key y. The protocol convinces the veri�er whether s is a valid signature
on m or not.

� A (possibly probabilistic) individual receipt generation algorithm
RecIndP (m; s; x) which, on input a message m, an `alleged' signature
s, and the secret key x, returns an individual receipt r which makes it
possible to universally verify whether s is valid or not. A signature can
selectively be converted by issuing r.

� An individual veri�cation algorithm VerIndP (m; s; y; r) which, on input
a message m, an `alleged' signature s, the public key y, and a correct
individual receipt r with respect to s, outputs that the receipt r is invalid
with respect to s or that r is valid w.r.t. s. If the latter is true, it also
outputs whether s is a valid signature on m or not.

� A (possibly probabilistic) universal receipt generation algorithm
RecUniP (x) which, on input the secret key x, returns a universal receipt
R which makes it possible to universally verify all signatures. The scheme
can be totally converted by releasing R.

� A universal veri�cation algorithm VerUniP (m; s; y;R) which, on input of
a message m, an `alleged' signature s, the public key y, and a universal
receipt R, outputs the the receipt R is invalid or not. If the latter is true
is also outputs, whether s is either a valid or a invalid signature on s.

The following statements must hold for a secure undeniable signature scheme:



� Unforgeability: The signature scheme is existentially unforgeable under
an adaptive attack, i.e., there is no e�cient algorithm that returns a valid
signature s on an arbitrary message m with non-negligible probability,
even if a polynomial number of valid signatures on chosen messages are
given.

� Invisibility: There exists no e�cient algorithm which, on input the public
key y, a message m, and an `alleged' signature s, can decide with non-
negligible probability better than guessing whether s is either valid or
not.

� Completeness and soundness of veri�cation: The veri�cation algorithms
Ver;VerInd and VerUni are complete and sound, where completeness
means that valid (invalid) signatures can always be proved valid (in-
valid), and soundness means that no valid (invalid) signature can be
proved invalid (valid). Indirectly, this must also hold for the algorithms
RecInd;RecUni.

� Non-transferability: A veri�er participating in an execution of the in-
teractive veri�cation Ver of a signature does not obtain information that
could be used to convince a third party about the correctness of a signa-
ture (although this veri�er knows whether the given signature is valid or
not).

3 Preliminaries and Building Blocks

In this section we �rst describe briey the notation we use. Then we present
an e�cient interactive zero-knowledge proof for showing that two discrete log-
arithms are either equal or not. This protocol will be used later in our scheme,
but is of independent interest. Such a proof is also called a biproof [11], because
it proves that the input word belongs to one of two languages. A less e�cient
bit-wise proof for this problem has been suggested in [11].

3.1 Notations

Zq denotes the ring of integers modulo q and Z�p denotes the multiplicative group
modulo p. We write a 2R A to indicate that the value a is chosen randomly
from the set A according to the uniform distribution.

In the sequel, we will make use of a cyclic group G = h�i of prime order q,
in which computing discrete logarithms is infeasible. For instance, G could be
constructed as a subgroup of the group Z�p for a suitable prime with qj(p� 1),
or G could be an elliptic curve.

We also assume collision resistant hash functions H` : f0; 1g
��G! f0; 1g`

(with ` = O(log2 q), in a practical realization e.g. ` � 160), the hash function
family Ht : Gt ! f0; 1g` and HG : f0; 1g� ! G. If G � Z�p, the latter could
for instance be constructed by �rst hashing to a string of length log2 p and then
computing the ((p � 1)=q)-th power of this value.



3.2 Proving the equality or inequality of two discrete log-
arithms

An important component of our realization of a convertible undeniable signature
scheme is an e�cient protocol that allows a prover to convince a veri�er about
the equality or inequality of two discrete logarithms, such that no additional
information about these logarithms is leaked. More precisely, assume the prover
knows the discrete logarithmx of y = �x and wants to allow the veri�er to decide
whether log� z = log� y for given group elements � and z. Therefore, the prover
and the veri�er execute the following protocol.

1. The veri�er chooses random values u; v 2 Zq , computes a := �uyv, and
sends a to the prover.

2. The prover chooses random values k; ~k;w 2 Zq , computes r� := �k, r� :=

�k, ~r� := �
~k, and ~r� := �

~k, and sends r�, r�, ~r�, ~r� , and w to the veri�er.

3. The veri�er opens his commitment a by sending u and v to the prover.

4. If a 6= �uyv the prover halts, otherwise he computes s := k � (v + w)x
(mod q), ~s := ~k � (v + w)k (mod q) and sends s and ~s to the veri�er.

5. The veri�er �rst checks whether �syv+w = r�, �~srv+w� = ~r�, and
�~srv+w� = ~r� and then concludes:

�
if �szv+w = r� then log� z = log� y
if �szv+w 6= r� then log� z 6= log� y

The following theorem can be proved.

Theorem 1 The above protocol is complete and sound. It is zero-knowledge

under the assumption that there exists no algorithm running in expected poly-

nomial time which decides with non-negligible probability better than guessing

whether two discrete logarithms are equal.

Proof (Sketch): The completeness of the protocol is obvious because an honest
prover can always convince an honest veri�er of the equality or inequality of
the two discrete logarithms. To prove the soundness property, it is important
to note that the commitment a sent by the veri�er in the �rst message does not
reveal any information (in an information-theoretic sense) about the value v and
that therefore the \challenge" v + w is truly random for the prover. Based on
this observation it can easily be shown that successful cheating is only possible
with negligible probability.
To prove the zero-knowledge property of the protocol, we show how to construct
a simulator that returns a protocol transcript with a probability distribution in-
distinguishable from the distribution of a veri�er's protocol view. The simulator
uses the veri�er as a black-box, i.e., it works independently from the veri�er's
strategy.

1. The veri�er's algorithm is used to compute the commitment a.



2. The simulator randomly chooses s, ~s, w, and c 2 Zq and computes r� :=
�syc, ~r� := �~src�, and ~r� := �~src�. The value r� is computed as �szc or
chosen randomly from Gnf�szcg, depending on which protocol outcome
should be simulated.

3. The veri�er's algorithm is used to compute u and v on input the values
r�, r�, ~r�, ~r�, and w.

4. If a 6= �uyv the simulator returns as protocol transcript the values r�,
r�, ~r�, ~r� , w, and halt. Otherwise, the simulator repeats steps 2 and 3
until the commitment a is correctly opened with values u0 and v0; step 2
is modi�ed such that c is not chosen randomly but set to c = v +w.

5. If the simulator �nally stops and if u = u0, it returns as transcript the
values r�, r� , ~r�, ~r�, w, s and ~s. If u 6= u0 then the discrete logarithm
x of y to base � can be extracted and the simulator returns as transcript
the value of x.

It can easily be seen that the expected number of repetitions of steps 2 and 3
is constant and that therefore the simulator runs in expected polynomial time.
Let us now explain briey why the output of the simulator is computationally
indistinguishable from a protocol view:

� the probability that a halt occurs is the same as in a protocol execution.

� the probability that the simulator returns x, the discrete logarithm of
y to the base �, is negligible because of the assumption (otherwise, the
simulator could be used to test the equality of discrete logarithms with
non-negligible probability).

� all values, except ~r�, are distributed according to the same distribution in
the simulator's output and the protocol view, and the two distributions
of ~r� can distinguished only by deciding whether log� ~r� equals log� ~r�,
which is not possible according to the assumption.

2

To obtain a designated veri�er proof [18], the commitment a must be com-
puted as a := �uyvV , where yV is the veri�er's public key and w = H10(�, y,
�, z, r�, r�, ~r�, ~r�; a; yV ). This proof is non-interactive, but as the veri�er can
generate this proof as well, it's not a receipt.

The protocol can also easily be turned into a non-interactive argument by
omitting the commitment a, setting w to 0 and computing v as v = H8(�, y, �,
z, r�, r�, ~r�, ~r�).

4 New convertible signature scheme

We describe our scheme and analyze its security.



4.1 Basic scheme

The protocol can be described as follows:

1. Set up: The system parameters are G, �, q, H`, and HG.

2. Key generation: Each user picks at random two numbers x1 and x2 from
Zq as secret keys and computes the public keys y1 := �x1 and y2 := �x2 .

3. Signature generation: A message m is signed in the following way:

(a) k 2R Zq, r := �k, ~r := HG(r)
x2

(b) c := H`(m; ~r)

(c) s := k � cx1 (mod q)

The resulting signature on m is the pair (~r; s).

4. Interactive veri�cation: The signature can be veri�ed or denied by inter-
actively proving the equality or inequality of the discrete logarithms of ~r

and y2 to the bases HG(�
sy
H`(m;~r)
1 ) and �, respectively, using the inter-

active protocol described in section 3.2. Alternatively, the non-interactive
designated veri�er proof outlined in section 3.2 can be used.

5. Individual receipt generation: To selectively convert a signature, this
proof is turned into an non-interactive argument using the non-interactive
argument protocol described in section 3.2. This argument is the individ-
ual receipt. Note that this also allows to make it publicly veri�able that
a given signature is invalid.

6. Individual veri�cation: By checking the validity of the individual receipt,
a veri�er can see whether the related signature is either valid or invalid.

7. Universal receipt generation: In order to totally convert all undeniable
signatures into digital signatures, the secret key x2 is published as univer-
sal receipt.

8. Universal veri�cation: The veri�er checks whether

HG(�
sy
H` (m;~r)
1 )x2 � ~r

holds.

4.2 E�ciency

We analyse the e�ciency of our scheme, where G is chosen as the multiplica-
tive subgroup of order q of Z�p and q is small. Thus in general we have short
exponents. Only for the computation of HG we need a full exponentiation, as
we exponentiate an output of a hash function h : f0; 1g� ! Zp with (p � 1)=q
to get an element in G. Let Ml(i) denote the number of jpj-bit multiplications

that are required to compute i cascaded exponentiations of the form
Qi

j=1 r
dj
j



Operations Signer Veri�er
Signature generation 2 �MQ(1) +MP�Q(1) {
Interactive veri�cation 5 �MQ(1) +MP�Q(1) 4 �MQ(2) +MP�Q(1)
Selective conversion 5 �MQ(1) +MP�Q(1) {
Individual veri�cation { 4 �MQ(2) +MP�Q(1)
Total conversion { {
Universal veri�cation { MQ(1) +MQ(2) +MP�Q(1)

Figure 1: Costs for operations

where l is the length of the exponents. Let P = jpj and Q = jqj. Figure 1 shows
the costs for the di�erent operations.

Let us illustrate the costs in an example with P = jpj = 1024 and
Q = jqj = 256. Using methods of [29], we have MP (1) = 308;MQ(2) = 373
multiplications for an exponentiation with one and two 256-bit exponents, re-
spectively and MP�Q(1) = 902 multiplications for an exponentiation with one
768-bit exponent. The costs for the di�erent operations in this example are
described in Figure 2.

Operations Signer Veri�er
Signature generation 1518 {
Interactive veri�cation 2442 2394
Selective conversion 2442 {
Individual veri�cation { 2394
Total conversion 0 {
Universal veri�cation { 1583

Figure 2: Costs in number of 1024-bit multiplications

Even better results can be achieved if G is chosen to be an elliptic curve over a
�nite �eld.

4.3 Security analysis

We distinguish the analysis in the parts unforgeability, invisibility, untransfer-
ability and completeness & soundness of veri�cation.

Unforgeability

Theorem 2 Under the assumption that the hash functions H` and HG are

truly random functions, forging valid signatures is equivalent to forging Schnorr

signatures.

Proof (Sketch): In the converted scheme, with known x2, let the function
HN : f0; 1g�� G! f0; 1g` be de�ned as

HN (m; r) := H`(m;HG(r)
x2):

The converted undeniable signature scheme is equivalent to a Schnorr signature
scheme using the hash function HN . But because HN is indistinguishable from



a truly random function (the only di�erences are possible collisions of HG), the
converted signature scheme is secure. As a consequence, also the non-converted
scheme has to be secure. 2

Invisibility

To prove the invisibility of the scheme prior to conversion, we need an additional
assumption, the Decision Di�e-Hellman assumption. We �rst de�ne the two sets

DH := f(�; y; �; z) 2 G4 j log� y = log� zg

NDH := f(�; y; �; z) 2 G4 j log� y 6= log� zg

of Di�e-Hellman and non-Di�e-Hellman 4-tuples.

AssumptionFor all probabilistic polynomial time algorithms A : G4 ! f0; 1g,
the two probability distributions

ProbT2RDH [A(T ) = 1] and ProbT2RNDH [A(T ) = 1]

are computationally indistinguishable (the probabilities are taken over the ran-
dom coin tosses of A and over the random choices from DH and NDH, respec-
tively).

Theorem 3 Provided that the assumption holds and that the the hash function
HG can't be distinguished from a random function, verifying a given signature
without the assistance of the signer can be done only with negligible probability,
even if a polynomial number of valid signatures is known.

Proof (Sketch): The basic idea is to transform an instance (�; y; �; z) of the
above problem into an instance of the signature scheme (we assume that the
instance (�; y; �; z) is already randomized, e.g. see [28]). Concretely, let � be the
generator, let y be y2, and let y1 = �x1 for a randomly chosen x1. Furthermore,
we simulate the hash function HG to be able to generate signatures. To generate
a correct signature, we proceed as described, except that we set HG(r) = �t

and ~r = yt2 for a randomly chosen t (this guarantees that the signature is
correct, even if we don't know x2). For the signature whose veri�cation is to
be equivalent to solving the above problem, let HG(r) = � and ~r = z: this
signature is only valid if the above 4-tuple is a Di�e-Hellman tuple. Therefore,
if there was any e�cient algorithm which can decide (better than guessing)
whether this signature is valid, such an algorithm could also be used to solve
the Decision-Di�e-Hellman problem, but this would lead to a contradiction.

Non-transferability

Non-transferability follows directly from the zero-knowledge property of the
interactive protocol for proving the equality/inequality of discrete logarithm.



Soundness & completeness of veri�cation

Before conversion, these properties follow from the soundness and the complete-
ness property of the used zero-knowledge protocols. In the selectively converted
version, these properties are inherited because of the impossibility to issue wrong
receipts provided the used hash function is collision resistant.

5 Robust convertible undeniable threshold sig-

nature scheme

Using standard techniques for veri�able sharing of discrete logarithms [23] and
methods from secure multi-party computations, our basic convertible undeni-
able signature scheme presented in Section 4 can be adapted for the threshold
scenario.

5.1 Model

In a convertible undeniable threshold signature scheme there is a group of n
signers such that any coalition of at least t signers can jointly sign a message.

The communication model is as follows: During the signature generation,
it is assumed that the signers can broadcast messages to each other and the
signers check proofs of other signers. During the interactive veri�cation each
signer has a channel to communicate to the veri�er.

The threshold scheme consists of the same procedures as listed in section
2, however, the key generation algorithm must output shares of the secret key
for each signer such that only at least t signer are able to sign a document on
behalf of the group, and the other algorithms should be adopted accordingly.

With regard to security against dishonest signers, we have to distinguish
between passive and active cheaters. Passive cheaters follow the protocols hon-
estly but try to gain additional knowledge by pooling their information, while
active cheaters can even deny service or send wrong values.

5.2 New scheme

We outline the robust convertible undeniable threshold signature scheme, based
on the scheme given in the previous section.

It is assumed that x1 and x2 are shared among n provers using a veri�able
t out of n threshold secret sharing scheme (for details see [27, 23]). A share of
signer i of a variable or value a is denoted Sharei(a). Given at least t distinct
(correct) shares, the value of a can be reconstructed using Lagrange interpola-

tion (see [23]). We also assume that shadows of the form �Sharei(x1) are publicly
known.
A message m is signed in the following way by d signers (t � d � n):



1. The signers jointly compute r := �k in a distributed manner. Each signer

i gets a veri�able share Sharei(k). A shadow �Sharei(k) is revealed and
publicly known.

2. Each signer computes ~ri := HG(r)Sharei(x2) and proves interactively and
in zero-knowledge to all other signers that this is correctly done. This
requires only a simple zero knowledge proofs of equality of discrete log-
arithms. If at least t signers are honest, each of them can compute
~r = HG(r)x2 by combining the values ~ri of the honest signers.

3. Each signer computes c := H`(m; ~r).

4. Signer i computes Sharei(s) := Sharei(k) � c � Sharei(x1) (mod q) and
broadcasts this value to all other signers. These shares are checked using
the revealed shadows. If at least t signers are honest, the value s can be
reconstructed, which is then sent to the veri�er.

The veri�cation protocols, as well as the procedures for generating receipts, can
be adapted from the basic protocols described in Section 4 in an analogous way.

5.3 Security analysis

For an outsider attacker the security analysis does not di�er from the analysis
given in the previous section.

As d signers (t � d � n) sign a message, we have to assume that there are
at most t� 1 dishonest signers and among those, there must not be more than
min(d� t; t� 1) actively cheating signers. We further have to assume that the
veri�er has no unconditional trust to any signer.

� Key Generation: It was already shown that any group of t � 1 mem-
bers does not obtain any knowledge concerning the secret keys and it's
impossible to cheat for signers during the key generation protocol [23].

� Unforgeability: The dishonest signer could pick a document m and try to
get a threshold signature on it, although the honest signers are not aware
of this document (e.g. they might think to sign another document m0).
Such an attack was successful in some multi party signature schemes as
pointed out in [21]. Here, however, such an attack is not successful. It
is impossible to transform a partial signature of a honest signer on m0 to
a partial signature on m, as r can't be fully determined by the dishonest
signer and r and m0 are both input of the hash function.

� Invisibility: Invisibility still holds even if t�1 signers send the knowledge
they gained during signature generation to the veri�er provided the veri�er
does not trust any signer unconditionally. In fact, r is known by the veri�er

anyway, but some HG(r)Sharei(x2) and the partial signatures can be send
him as extra knowledge. However, the relation ~r = HG(r)x2 can't be
proved by t� 1 signers. The partial signatures are useless as well, as they
can be simulated by one signer.



� Non-transferability: As the interactive veri�cation is zero-knowledge and
the information from selective conversion for given signatures does not
help to verify another alleged signature, non-transferability holds.

� Robustness: As only up to min(d� t; t� 1) signers are totally controlled
by the attacker, the signature can always be generated by the t remaining
signers, that are either honest or only passively cheating.

6 Further extensions

Clearly, the security model can be somewhat strengthend by updating the in-
dividual shared parameters from time to time without changing the public key
[15]. Furthermore, the threshold schemes can be transformed into shared sig-
nature schemes with arbitrary access structure just by substituting the used
secret sharing scheme. It's also possible to share the veri�er by using ideas pro-
posed in [23, 18] or to use publicly veri�able secret sharing [28] instead of the
non-publicly veri�able sharing scheme.
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