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Banks, amongst other businesses, will soon be under a great deal of pressure to
improve the range and friendliness of their telephone-based services without
compromising transaction security.  Currently, automatic telephone services
authenticate callers using a PIN-code and consequently do not offer a sufficient
level of security for significant transactions; more sophisticated services, which
depend on a human agent, demand lengthy authentication procedures.  The
technology of speaker verification has the potential to deliver fast and secure
caller authentication for automated or agent-assisted telephone services. This
paper gives an overview of the work of the CAVE consortium, a European-
wide research project in speaker verification in which Ubilab is involved.
Results obtained in experimental work so far compare favourably with the state
of the art in speaker verification.

1. Introduction
It is clear that increasing numbers of businesses, and banks in particular, are becoming less
reliant on traditional "bricks-and-mortar" infrastructure. Credit-card purchases and all
manner of other financial transactions are currently being made by telephone, and the recent
unparalleled growth of the Internet has now given rise to the first World-Wide Web-based
financial services [Sfn96][Sch96]. The future range and depth of the services which will be
offered over these channels, or those that evolve from them, is only hinted at by what is
currently available. However, whereas the providers of these Internet services are careful to
emphasise the level of cryptographic security with which transactions can be made, many
telephone services are at the moment secured only by information which is relatively easy to
snoop, such as a personal identification number (PIN) code, or, in more sophisticated
cases, a password and the answers to various questions.  Calling-card services, in which
cardholders are able to make telephone calls and charge them to a personal account with the
card-issuing company, are a particularly vulnerable form of telephone service; they are
subject to billion-dollar levels of fraud, since it is a simple matter for a fraudster to
"shoulder-surf" calling-card users at public telephones and obtain all the information
necessary to charge calls to a user's account.

Telephone direct banking services have not yet fallen victim to fraud on such a scale;
however, they may find themselves under attack from fraudsters as they become more
prevalent and begin to offer a wider range of transactions to callers. A potential solution to
this problem is telephone speaker verification -- the authentication, by the sound of the voice
alone, of a caller's identity claim, in order to grant that caller access to sensitive data or
services. The European Caller Verification (CAVE) consortium, of which Ubilab is a
member, has been set up in response to the current threat to telephone calling-card services,
and in anticipation of future threats to telephone banking services; it is currently researching



- 2 -

and developing speaker verification technology, which it intends to deploy into field test
systems.

This paper aims to give a brief overview of the underlying technology of speaker
verification, the current market and applications for the technology, and the research which
has been undertaken so far within the framework of the CAVE project. The subsequent
sections of this paper address these areas in turn.

2. Speaker Verification
The human voice is a biometric – a physical or physiological characteristic of a person
which distinguishes him or her, to a greater or lesser extent, from other people. The goal of
speaker verification (SV), is to make a Yes/No decision in response to a speaker's initial
claim of identity [Gis94]. It is therefore relatively constrained compared to speech
recognition, in which the sequence of words that were spoken must be detected. However,
SV is based on many of the same fundamental concepts as speech recognition; the
parametrisation of the speech signal to extract appropriate coefficients for pattern matching,
the training of acoustic models on appropriate spoken training data, and the subsequent
matching of acoustic models against new, "unseen" speech data. In speech recognition, the
output of this stage is the hypothesised sequence of words uttered; in speaker verification, it
is, generally speaking, a measure of similarity, be it a Euclidean distance or some
probabilistic measure, between the new speech and the speaker-specific model or models
which corresponds to the claimed identity. This score is typically thresholded and the
speaker's identity claim consequently accepted or rejected. There are therefore clearly two
types of classification error which a verification system can make; the false rejection of a
speaker making a honest identity claim, and the false acceptance of a speaker making a
dishonest one. The performance of a laboratory-based SV system is usually measured by
the single figure representing the point at which the rates of false acceptance and false
rejection are equal; this single figure measure is termed the Equal Error Rate (EER). Of
course, the actual point at which the trade-off between false acceptance and false rejection
should be set in a real-world system need not necessarily be the point of equal error, but
would have to take into account a number of factors, such as expected cost of false
acceptance, customer tolerance of false rejection, and so on.

Although simple template-matching schemes can give reasonable verification
performance for comparatively small computational effort [Dod85], and neural network
techniques are starting to show promise [Sha95], the most flexible technology on which to
build SV systems is arguably the Hidden Markov Model (HMM) [Rab93].  The HMM is a
statistical model of the speech signal, and has achieved great success recently in speech
recognition. An HMM consists of a set of states, each modelling some short period of
speech, and a set of probabilities corresponding to the allowable transitions, over time,
between states. Individual models can be built for acoustic units as small as the phoneme
(the smallest unit of speech where substitution of one such unit for another leads to a change
in meaning) and as large as an entire phrase. Phoneme-sized HMMs can be concatenated to
form word models, so long as the pronunciation of a word is available, and word models
concatenated together to form a network, to constrain the output of the recogniser only to
valid sentences from some grammar. HMMs can model the variation with which a single
speaker  utters a particular sound or word, and also model such variation across multiple
speakers (although speaker verification is clearly only concerned with the former). In
addition, the choice of model topology - the number of states and the network of allowable
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interconnections between them - is highly flexible and can be chosen in advance according
to the given task and the amount of available training data.

Differing levels of dependence on the lexical content of the speaker's utterance can be
engineered into an SV system. At one end of the scale, SV can be made totally independent
of the sequences of words uttered during enrolment - the period during which the potential
user supplies utterances from which the model of his voice is to be trained, and access –
when the system is in operation and the speaker wishes to be authorised. Such a    text-   
   independent    SV system can be trained with and used on any utterance from a speaker; since
it places no constraint on the utterance, it could be used to perform non-intrusive
verification, for example to detect fraudulent use of a mobile phone where it might not be
acceptable to undergo a separate authentication stage before dialling a number. In contrast,
   text-dependent    SV specifies that not only must the speaker's voice match a stored voice
model, but also that the speaker must utter some specific piece of personal information, such
as a PIN-code or other password.  A related form of text-dependent SV is referred to as
   text-prompted;    here, the speaker does not know what he is required to say in order for
authentication to take place. Instead, the required utterance (for example, a randomly
generated short digit sequence) is used to prompt the speaker, who must then repeat the
sequence. The primary advantage of text-prompted SV is that it is far less vulnerable to
attack by the replay of recorded speech than either text-independent or password-based text-
dependent verification.

A technique which was only recently applied to SV and is now commonplace is so-called
   cohort         modelling    ; this refers to the normalisation of a verification score with respect to
scores obtained for other speakers in the speaker collection [Ros92]. At its most basic, this
normalisation removes the effect of non-speaker-related  characteristics (for example,
extraneous noise) from the verification process. Additionally, if, for each speaker X, cohort
speakers are chosen for their similarity to X, then the process can also improve the
discrimination of the speaker from these "soundalikes". In this case, the soundalike group is
referred to as the cohort of speaker X. If the normalisation speakers are the same for all
speakers, a single model can be trained from their speech; this model is known as a      world
     model.

3. The application of Speaker Verification to Telephone Banking
Speaker Verification is lagging significantly behind speech recognition, in terms of
deployment of the technology in wide-scale, publicly-accessible telephone services such as
those offered by banks or other businesses. In America, where new technologies are
typically adopted far earlier than in Europe, there has still only been one major application of
SV technology, namely the Sprint Voice FONcard [Mar95]. This is a telephone calling card
in which the caller's identity claim and the verification of that claim is made through one
single utterance of the caller's social security number. No such services are available in
Europe; instead, telephone services, such as UBS's "LibertyLine", use touch-tone
sequences to authenticate callers and allow them to navigate through various options.

Even before the phenomenal growth of the World-Wide Web, it was estimated that direct
banking, in the forms of telephone and videotex systems, would account for more than half
the banking transactions of 30% of the population of Europe by the turn of the century
[Dat95].  In addition, in the same survey, 79 out of 83 European banks surveyed predicted
that they would be offering telephone banking by the year 2000.  So far, telephone direct
banking has proved far more popular than videotex banking, since the most demanding
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piece of equipment it requires in the home is a touch-tone telephone. However, the evolution
of the Internet into a place where business can be done, and projections of the future
prevalence of the low-cost domestic "Internet appliance", suggest that a large number of
banks will use the Internet as a channel for the delivery of a wide range of banking services
in the not-too-distant future. It therefore seems likely that banks will begin to offer telephone
and Internet banking alongside each other, thereby giving the customer a broader range of
options for accessing  personal financial data and making transactions.

Since totally-automated telephone banking services rely on touch-tone entry of the
customer number and PIN-code, the functionality of these services is limited, and they do
not attempt to provide a comprehensive alternative to existing bank services which can be
obtained by post or through branch visits. More advanced services, offering a broad range
of transactions such as bill payments, standing orders,  and other forms of cash transfer,
must currently be offered via a call centre, in which a large number  of human agents deal
with customer enquiries round-the-clock. In these services, customer authentication is
currently performed through the use of a "security handshake"; this involves the asking of a
number of questions to which only the authorised caller should know the answers. For
example, one of Europe's market-leading telephone banks, interviewed by CAVE, currently
authorises customers by asking them to state 2 letters (chosen at random) from a secret
password, plus any one of the following pieces of information:

• Date of Birth
• Mother's maiden name
• Place of Birth
• "Special" date (not birthday)
• "Special" address (but not the customer's own)

This method was reported to work well but was also felt to be inconvenient and time-
consuming. Since the password is never uttered in its entirety, it is not possible for a casual
caller to overhear it, although it would eventually be possible to work it out if a number of
these authentications were overheard.

The case for SV in future direct banking services is, in our view, quite powerful. Since
authorisation for the use of Internet banking services will be a swift and secure process
involving only the typing of a password, existing strong authentication methods for
telephone services (as opposed to the weak methods exemplified by PIN-codes) will be
judged unacceptably complicated and time-consuming. Moreover, advanced telephone
banking services must still authenticate  major transactions by confirming them in writing;
this would clearly be unthinkable in the world of Internet banking!

Therefore, if customer expectation of telephone-based services increases, PIN codes will
cease to be a sufficient authentication procedure for these services. Moreover, the PIN code
is already proving itself to be an insufficient security measure for some existing telephone
services. As more and more companies and organisations issue cards, there is a greater
burden on the cardholder to memorise randomly-selected digit strings corresponding to
differing cards from various issuers; moreover, if it is possible for the cardholder to change
their PIN-codes, the customer can be tempted to adopt the same PIN-code for more than one
card.  PIN-codes remain popular with card-issuers, since they are seen as a method of "out-
sourcing" the security problem to the cardholder; the small print signed by new cardholders
ensures that any breach of PIN-code security is legally the fault, and consequently the
responsibility, of the cardholder. However, much of the US calling-card fraud reported
annually can be attributed to the use of sophisticated techniques, such as video equipment to
spy on unwitting cardholders using payphones in public areas. With such activity
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threatening to invalidate the "PIN-code assumption", it seems appropriate to see how current
security measures may be reinforced. Speaker verification would be one such reinforcement
method.

The two ways in which SV could be applied can be referred to as the "gatekeeper" or the
"alarm-bell", each one applicable to fully-automatic and agent-assisted services. In the
gatekeeper method, the caller must initially be challenged to prove his identity in order to
gain access to the service. The appropriate SV technologies here are text-dependent (for
example the utterance of a PIN-code or a password, although this may be too easily
snooped) and text-prompted (in this case, overhearing or recording the utterance is of no use
since this utterance will never be used to access the service again).  In alarm-bell mode,  the
caller can be weakly authenticated at the beginning of the call and continuously verified
throughout a transaction. When a major transaction is finally processed, the SV system must
be sufficiently confident that the caller is who he claims to be. The strength of this approach
would be that the result of the verification could be used, along  with various auditing
information such as a record of recent transactions, to generated a combined decision on
whether to carry out the transaction.  Too low a final authentication score would trigger the
"alarm"; at this point, a further attempt to verify the caller could be made. So-called "audit
trail" information is already used to root out fraudulent use of companies' private telephone
exchanges or mobile telephones; tell-tale signs of fraud include, in the PBX case, long
overseas calls outside office hours, or the apparent use of a mobile telephone from two
different parts of a country at the same time.

4. CAVE SV Experiments
The CAVE Project is a two-year research project, supported by the European Union, which
aims to research speaker verification technology and deploy it into field trials of real
telephone services in the fields of telecommunications (represented in the project by PTT
Telecom NL) and banking (represented by UBS). Other project partners include Vocalis, the
UK speech technology company, KTH (Royal Institute of Technology, Stockholm), Telia,
KUN (Catholic University of Nijmegen, Netherlands), ENST (Ecole Nationale Supérieure
de Telecommunications, Paris) and IDIAP, (Institut Dalle Molle d'Intelligence Artificielle
Perceptive, Martigny, Switzerland). Effort so far has concentrated on determining the
potential for the application of SV into existing services, developing specifications at the
functional and technical level for the prototype systems which will be built, developing the
experimental environment for SV research and trying to achieve state-of-the-art performance
on available SV data collections.

Research so far has involved the YOHO corpus [Cam95], since it is currently the only
comprehensive and freely available SV data collection.  It contains enrolment and
verification sessions for each of 138 speakers (106 male and 32 female). Utterances were
collected in a quiet office environment via a telephone handset connected to a workstation
and sampled at 8 kHz, the standard sample rate for telephone speech.  For each speaker,
there are 4 enrolment sessions of 24 utterances each, and 10 verification sessions of four
utterances each. Each utterance is a so-called "combination lock" phrase consisting of three
two-digit numbers (for example, "twenty-six, thirty-four, sixty-one"). No phrase is
common to the enrolment and verification sessions for any speaker, and the experiments
described in this paper can consequently be thought of as text-prompted.

State-of-the-art performance on the YOHO corpus has recently reached an Equal Error
Rate (EER) of less than 0.5%.  Colombi et al [Col96] achieved an EER of 0.282% with an
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HMM-based verification system by optimising the selection of cohort speakers against
whom the verification score was normalised. Enrolment was performed on 24 of the
combination-lock triplets (a quarter of the available enrolment data) and tests performed
using groups of 4 triplets.  Setlur et al [Set96] performed experiments only on the male
speakers and, by combining standard speaker-dependent modelling with some speaker-
dependent data derived from speaker-independent speech models, achieved an EER of
0.255%. Although their speaker-specific models were trained on 96 combination-lock
phrases – 100% of the available enrolment data1, verification was only performed on
individual triplets. Use of the maximum possible amount of data for both enrolment and
verification unsurprisingly reduces the error rate. Che et al [Che96] obtained a 0.09% false
acceptance rate at a false rejection rate of 0% by using all 96 available triplets in enrolment
and a group of 4 triplets for each verification attempt. This result suggests an EER of
somewhere between these two rates.

An experimental environment for SV research has been developed on Unix platforms
using the HTK V2.0 Hidden Markov Modelling toolkit [Ent95]. This environment has
allowed the investigation of a wide variety of text-dependent and text-independent
approaches to verification. The first stage of CAVE project work using this platform has
been aimed at calibrating verification performance between research sites, and has also
allowed an initial investigation of optimal HMM  topologies for SV.  So far, simple "world
modelling" has been investigated; out of the 106 male and 32 female speakers, 10 speakers
of each sex were chosen and their utterances used to create a single world model. These
speakers were not subsequently used in the initial SV tests. Varying amounts of enrolment
speech were used to train speaker-specific models, ranging from just the data from a single
enrolment session of that speaker, to all the data from all four sessions. The particular form
of model depended on the SV approach taken; in text-independent mode, a single model was
trained for each speaker using many differing utterances; in text-prompted mode, a set of 17
speaker-specific sub-word models, as illustrated in Table 1, was required, to allow
verification on arbitrary combination-lock strings.

one two three four five six

seven nine ty Twen Thir Four

Fif Six Seven Eigh Nine

Table 1: Sub-word recognition units in text-prompted SV experiments on YOHO

The speech waveform data supplied in the YOHO collection had to be parametrised to
extract appropriate coefficients for model training. Each waveform file was blocked into 100
overlapping frames per second, each frame of length 25.6 ms. Each frame was parametrised
to yield a vector of 12 mel-frequency cepstral (MFC) coefficients. The use of MFC
coefficients is common in speech modelling; amongst other reasons, the coefficients within
each frame are relatively decorrelated, which reduces the need to reflect such correlations, or
covariances, in the HMM. "Differential" coefficients, reflecting the rate of change of each
MFC, were also added to the vectors; this is a common technique which compensates, at

                                                
1Although YOHO is divided into enrolment and verification subsections, there are no standards for the

proportion of enrolment data used and the exact nature of testing – such as whether speakers are excluded
from the test to be used in cohort modelling, or the relative number of "impostor attempts" made compared to
the number of true accesses. This must be borne in mind when comparing results.
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least to some extent, for the in-built HMM assumption that successive speech vectors are
statistically independent. In all experiments described here, individual models were trained
using the widely-used Baum-Welch estimation algorithm on which the HTK training tools
are based. Differing SV experiments were performed by changing a number of model
parameters, such as the model topology, the number of model states allocated to each
phoneme and the number of statistical Gaussian distributions modelling the acoustic
parameters in each state. In addition, the amount of enrolment data used to train speaker
models was also varied.

Verification tests were performed using a speaker-specific model, X , corresponding to a
claimed identity, a world model W , and a silence model S . The silence model was trained
on a random sample of silent portions of enrolment data across all YOHO speakers, and
used in verification to take optional inter-word pauses into account. For an unseen utterance
Y , which may or may not have been spoken by speaker X , the HTK recogniser was used to
force an optimal alignment between the speaker-specific model X  and the utterance Y . This
alignment yielded a probabilistic score, denoted as Λ(Y | X ∪ S)  , measuring the closeness of
the fit between the model and the unseen utterance. Additionally, an alignment score
Λ(Y |W ∪ S)  was generated using the world model W. The two scores were combined to
generate a so-called log likelihood ratio

LRX ,W ,S (Y ) = log
Λ(Y | X ∪ S)
Λ(Y |W ∪ S)







For each speaker, the acceptance/rejection threshold Θ(X) , to which the likelihood ratio
score is compared, was set a posteriori; this allowed laboratory EER figures to be
calculated.

40 honest access attempts were simulated for each speaker, by performing verification
individually on each of the 40 available combination-lock digit strings. Additionally,
impostor break-in was simulated, for each speaker X , by selecting 40 impostor utterances,
30 from speakers of the same gender as X  and 10 from the opposite gender, and trying to
verify the speech of each impostor using the model of speaker X . A total of 9440 (that is,
118*(40+40)) separate access attempts were therefore performed for each HMM topology
tested. A subset of the results obtained in initial experimentation are shown in Table 2. The
"S/P" and "G/S" columns give the number of model states allocated per phoneme, and the
number of Gaussian distributions per state, respectively; also, where multiple enrolment
sessions were used to train speaker-specific models, training utterances were taken equally
from each session.  All results given here are for the so-called “left-right” HMM model
topology, in which a transition is only allowed from a model state to itself or to its
immediate successor; performance here was consistently better than for more flexible model
topologies.
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Covariance
Modelling

S/P G/S Number of
Training Utts

Number of
Sessions

Equal Error
Rate

No 2 1 12 1 4.58

No 2 1 24 1 3.15

No 2 1 12 4 2.63

No 2 1 24 4 2.24

No 2 2 96 4 0.82

Yes 1 1 96 4 0.36

Table 2: Results on varying HMM topologies and parameters in CAVE SV experiments.

0

0.2

0.4

0.6

0.8

1

d := − LR

F231

1−P(d | F231)

P(d | F−imp.)

P(d | impostor)

P(d | M−imp.)

Figure 1: SV performance for YOHO speaker F231.

As can be seen from Table 2, the best result obtained was an EER of 0.36%. Equal Error
Rates here have been calculated in a gender-balanced manner to correct the imbalance
between the numbers of male and female speakers in the YOHO collection.

The best performance has been achieved where the covariances between MFC
coefficients have been modelled, despite the relative decorrelation of these coefficients. For
methods without covariance modelling, it is unsurprising to note that the use of more data
improves verification performance; in addition, it can be seen that training with data from a
number of enrolment sessions leads to a significant reduction in error rate, from 4.58% to
2.63% for the EER between rows 1 and 3 of Table 2.

Recently, a new set of results has been obtained with the latest release of the HTK front-
end analysis software; although they have not yet been ratified across all CAVE research
sites, they do point to a major improvement in performance through the use of an increased
number of Gaussian distributions per state. In particular, an EER of 0.124% has been
achieved using 4 Gaussians per state, and without the need for full covariance modelling.
This figure compares favourably with the state of the art in speaker verification on YOHO.
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Figure 1 shows, for YOHO female speaker F231, the distributions of the SV distances,
d , from the HMM verification system, for all the honest and dishonest accesses attempted
for this speaker. The inversion of the “honest access” curve, P(d|F231), allows the point
of equal error to be shown, as the intersection of 1 − P(d|F231) with P(d|impostor) .
Θ(F231) , the acceptance-rejection threshold, is therefore set to the value of d at this point
of equal error. It can be seen from the intersection of the honest access curve with the curve
P(d|F − impostor) that consideration only of the female impostors would lead to a higher
point of equal error and a different value of Θ . Correspondingly, the EER with male
impostors only is zero.

5. Future Challenges
The CAVE consortium faces a number of future challenges, technical and implementational,
in reaching its goal of demonstrating speaker verification in field tests corresponding to real
services.  One of the most important is telephone variability. Since the YOHO collection was
recorded from a standard telephone handset connected directly to a workstation, it does not
feature any of the acoustic variability associated with the use of differing telephones, or with
the transmission of the speech signals over differing networks (most notably the mobile
network).  A new round of laboratory experiments is currently beginning using a Dutch SV
database which exhibits a great deal of channel and handset variability.  

Outside the laboratory, a partial solution to the channel variability problem is to specify
that real users of a speech-enabled telephone service should enrol into the service a number
of times using the telephones they anticipate using to access the service in the majority of
cases. Although in the case of a banking service, it is fair to assume that home or work
telephones will be used to make the majority of accesses, such an assumption is not possible
in a calling-card application, where it can be more or less assumed that the caller is definitely
not using his own telephone. The enrolment question is an important one since it is clearly
not enough to achieve good verification performance regardless of how much enrolment
data is required; instead, the enrolment strategy must be carefully selected to ensure
acceptable performance without placing too great a burden on the customer. What actually
constitutes acceptable performance is, of course, a further question, which can only be
investigated in field tests.

6. Conclusions
Banks may soon have to deploy technologies like speaker verification to improve the speed,
friendliness and functionality of their telephone services without compromising security.
One of the goals of the European CAVE consortium is to anticipate this  need, through a
combination of high-level requirements analysis and system building, and algorithm-level
basic research to deliver technologies suitable for incorporation into such systems.
Experimental research performed within the project framework is already state-of-the-art and
the design and implementation of field-test systems which will allow the exploitation of this
research has already begun.
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