
Architecture Support for Global Business Objects: Requirements and Solutions

Walter Bischofberger1, Michael Guttman2 and Dirk Riehle1

1 Ubilab, Union Bank of Switzerland, Bahnhofstrasse 45, 8021 Zürich, Switzerland
2 Genesis Development Corporation, 10 North Church Street, 4th Floor West Chester, PA 19380 USA

bischofberger@ubilab.ubs.ch, mguttman@gendev.com, riehle@ubilab.ubs.ch

Abstract

The development of world-wide distributed object-oriented sys-
tems poses a considerable number of hard questions. In this
paper, we summarize these questions as a set of requirements
which we consider to be important for a software architecture to
be successful, and we present our solution for such a software
architecture. Our main conclusion is that such a software archi-
tecture must be reflective in all its key abstractions in order to
allow analyzing and operationalizing its properties. A main-
stream banking project is on its way which conforms to this
architecture. At Ubilab, we are focusing on the research aspects
of the project like enabling smooth evolution and explicitly
modeling and operationalizing the software architecture at run-
time.

1 Introduction and Motivation

The Union Bank of Switzerland (UBS) is a large globally oper-
ating bank the operations of which require more and more
world-wide distributed applications. New applications must
integrate with old applications and must be prevented from
turning into legacy applications themselves. To address these
problems, UBS is developing a homogenous object-oriented
software architecture for both wrapping and integrating legacy
systems and providing a common base for new applications.

In this paper, we present the main requirements for such an
architecture as well as our solutions. Key requirements for this
architecture are that it must explicitly support evolution from
the very first day, must flexibly utilize and integrate existing
and new middleware, and must provide information to analyze
the architecture and to operationalize it, for example to guaran-
tee pre-specified runtime behavior. We approach this goal with
a distributed object-oriented virtual machine based on a small
number of reflective key abstractions. We use this virtual ma-
chine to provide flexible evolution support and an operational-
ized software architecture model that lets components analyze
and control the system.

UBS is undertaking this effort in form of a regular banking
project, for which Genesis Development Corporation is con-
sulting. The authors of this paper are three of the four authors
of the key software architecture specification document [1].
Earlier this year, a first prototype has shown the feasibility of

the approach in a limited setting, and by the end of the year we
should have a proof of its viability in a world-wide distributed
context. Ubilab, the research laboratory of UBS, is focusing on
the research aspects of the project.

2 Requirements

The development of world-wide distributed object systems
poses a number of requirements. We identify the following
main categories, which we detail in the following:

• set of basic capabilities and services;
• support for large scale software development;
• explicit modeling of software architecture;
• support for graceful evolution;
• integration with existing infrastructure.

2 . 1 Set of basic capabilities and services

Every project and every application must provide certain capa-
bilities and requires certain services to build upon.

A capability offered by an object is some functionality
which makes it usable for specific clients. Usually, an object
offers more than one capability which makes it useful for cli-
ents in different contexts. A capability is expressed as an inter-
face. Types the instances of which have to offer this capability
inherit from this interface. Examples are the capability of an
object to provide a passive data representation of itself or the
capabilitiy to announce events about state changes.

A service provides some useful functionality to an unknown
number of clients which cannot be predicted in advance. Usu-
ally, a service object focuses on providing a single service as
opposed to providing a number of different capabilities. A
service is expressed as an interface which clients directly use.
Examples of services are naming and transaction management.

Some capabilities and services are domain dependent, some
are not. They should be provided as homogeneously as possi-
ble. Our experience indicates that a set of basic capabilities
should by offered by any object in the system. Moreover, there
are many mandatory services for any large system, especially
in the banking domain. We do not detail their description, but
leave this to more elaborate papers [2].

2 . 2 Support for large scale software development

Every project and every application of a certain size requires
comprehensive tools to be properly managed, developed and
evolved. Not only does this include tools for editing, brows-
ing, building, configuration management and distributed coop-
erative software development, but also a set of comprehensive
analysis and debugging tools. Debugging tools are particularly

pertinent for the ever increasing complexity of distributed sys-
tems [3], [4].

A software architecture and a conforming implementation
must therefore explicitly provide hooks to allow smooth inte-
gration of a diverse number of tools. It should be possible to
utilize these hooks to develop project specific tools and to
integrate them into the overall development process.

2 . 3 Support for evolution

Systems in the banking and other domains are distributed sys-
tems which tend to be big and to become bigger over time.
Complex dependencies between object implementations, serv-
ices, middleware, legacy applications and systems emerge,
which prohibit simple replacement of single components. At
the same point in time, several object and component versions
might be required to be available. In addition, it must be possi-
ble to test new extensions in the existing infrastructure. Thus,
evolution must be considered from the very first day.

2 . 4 Guaranteed runtime behavior

Often, some pre-specified runtime behavior has to be guaran-
teed. Systems must provide a certain level of responsiveness or
throughput, must perform certain tasks within a given time
limit, etc. Many of these guarantees can be sufficiently formal-
ized to serve as evaluation and feedback criteria at runtime so
that manager components can take care of them. The informa-
tion needed for such tasks must be made explicitly available so
that it can be analyzed and so that further operations can be
reliably based upon this analysis.

2 . 5 Integration with existing infrastructure

It is well-known that systems must integrate with existing
legacy applications, middleware and operating systems. A new
software architecture must both utilize existing functionality,
because not everything can be invented from scratch, and inte-
grate and run in parallel with existing systems, because those
cannot be replaced at once.

2 . 6 Conclusion on requirements

We believe that requirements like support for large scale soft-
ware development, evolution, and guaranteeing runtime behav-
ior can only sensibly be achieved with a software architecture
which is reflective in all its key abstractions. If this is not the
case, one will always face situations which operate on implicit
information and thus are based on potentially costly work-
arounds. We have therefore designed a reflective software archi-
tecture which we present in the next chapter.

3 The GBO/GNORF Approach

We now review our architecture specification and discuss how
we think it fulfills the requirements. GBO (Global Business
Objects) is the banking project name, and GNORF (Globally
Networking Objects based on a Reflective Framework) is our
preliminary name for the research project. GBO deals with im-
plementing the basic architecture for generic application sup-
port, the first one of which is a prototype for managing high
risk portfolios. GNORF deals with the research issues, that i s
flexible evolution support and explicit modeling and opera-
tionalizing the software architecture model at runtime.

3 . 1 Object model and software architecture

The key abstractions of our software architecture are Type, Im-
plementation, Request and Reference, followed by a larger set
of further types (depicted in figure 1). The software architecture
makes these types first class abstractions, that is in a running
system they are represented as objects. They form the heart of a
virtual machine on which more elaborate services and frame-
works are built. The implementations of the key types may be
built on top of existing services which in turn may rest on ex-
isting middleware. For example, the migration of Request ob-
jects might reuse a general object migration service which in
turn might use a CORBA compliant object request broker.

The basic architecture can be described as a single rooted
type hierarchy. In this view, the root type is AnyObject, which

TransactionRequest

ImplHandle UnitOfWorkImplBinding

AnyWriterEventInterest

Event AnyReader

AnyObject

PropertyOperation

AnyType

rectangles represent types

triangles represent
subtyping/ inheritance

lines represent a use-relationship, a bullet at the
end represents a cardinality of 1..n

all types in this figure inherit directly or
indirectly from AnyObject

Figure 1: OMT diagram visualizing some central types and their relationships

defines the basic capabilities provided by any object. Instances
of AnyObject can be referenced for purposes of remote opera-
tion calls, migrated to places where proper implementations
exist, monitored using eventing, etc. Each type is represented
as an object, that is an instance of type AnyType, which i s
itself a subtype of AnyObject. AnyType instances provide op-
erations for plugging in different implementations and for fine-
grained manipulation of type interfaces together with their
versioning. Essentially, this is similar to a structurally reflec-
tive metalevel architecture like the one of CLOS [7]. It is or-
ganized as a traditional framework but does not face the prob-
lems programming language based frameworks do.

This reflective meta-level is used not only to explicitly rep-
resent single domain and business concepts as types, but also
to represent explicit domain and business models as sets of
types interacting according to the domain and business seman-
tics. The same things that can be done with single type in-
stances should also be possible to be done with more complex
model instances. For example, it should be possible to migrate
object graphs as a whole or to type check them for confor-
mance with a model. The virtual machine is also part of a do-
main, namely the system domain, so that this applies to all
levels.

Value types like Integer, Float, and String are kept separate
and are not derived from AnyObject. This also includes non-
primitive value types like Date and SecurityTicket. Values are
not objects, since they are always copied, that is they are al-
ways local, and no referential integrity has to be maintained.
Essentially, for value types only standard data representation
formats have to be defined so that they can be transported be-
tween processes.

Type objects handle the references to their instances, define
their interpretation and manage their name space. Furthermore,
they carry out the dispatch required when clients issue requests
to their instances. Both references and requests are represented
as objects, with Request being a subtype of AnyObject, and
Reference being a value type. Explicit and reflective type ob-
jects are our first key to managing type interface and imple-
mentation evolution.

Transactions are based on explicit Request objects. Trans-
actions provide an interpretation context for execution, and are
either guaranteed to fully succeed or fail without leaving gar-
bage. This can be used for system evolution: Installing new
versions of a set of types and type implementations is treated
as a transaction which either completely succeeds or fails, al-
ways leaving the system in a stable state. Combined with code
shipping this is our second key to system evolution.

3 . 2 Fulfilling the requirements

How does the proposed architecture fulfill the requirements
posed in section 2?

• By clearly defining a type hierarchy with explicit proto-
cols, it is clear at which level which capabilities are guaran-
teed to be available. They can be implemented based on fur-
ther services.

• The reflective architecture allows analyzing and operation-
alizing every relevant abstraction and therefore provides
support for almost all tools imaginable.

• The reflective architecture provides the “primitives” for
reflective higher level models of software architecture.
Without analyzable and operationalized type and request
objects, it does not make sense to talk about analyzable and
operationalizable software architecture models.

• The reflective architecture provides the hooks for fine-
grained manipulation of type interfaces and implementa-
tions and therefore is a fine starting point for evolution.

Reflection is used here as a means for fulfilling the require-
ments posed in section 2. It is not an end in itself, but rather
the best solution we know of that provides us with the required
flexibility to develop support for type and domain model evo-
lution and to explicitly model a system’s software architecture.

4 Related Work

Compared to CORBA [8], [11], our approach is much more
flexible at the initial expense of static typing. CORBA pro-
vides a well elaborated object model and a set of well engi-
neered service specifications, but it lacks concepts like ex-
plicit and operationalized type and request objects which we
consider to be key to our problems and their solutions. SOM
seems to be more similar to our approach, so that we are inves-
tigating whether we can instrument it for our purposes.

The introduced reflectivity allows us to tackle evolution
problems much easier than CORBA does. Our type objects al-
low detailed control over interpretation of type specific refer-
ences and optimize life-cycle issues (no factories). The inter-
pretation of requests as objects and their handling through re-
flexive types lets us design and implement transactions in an
eased manner and apply them to every object in the system,
including the type system and domain models.

5 C o n c l u s i o n s

We have presented a reflective object model which can be im-
plemented as a virtual machine running on several different
platforms, and have shown how we think it will help us fulfill a
number of difficult requirements for large distributed software
systems. The reflectivity of the model makes it possible to
introduce high-level abstractions of software architecture at
runtime. We expect them to be better suited to tackle some of
the harder problems of such systems than those of the basic
object paradigm. In particular, they will help us to address evo-
lution issues and guaranteeing runtime behavior.

The high-level abstractions we will be using are still evolv-
ing: We are working on graph-based specifications for object-
oriented (business or system) domain models to support evolu-
tion on both a fine-grained and a coarse-grained scale. We are
considering using the component and connector model of Shaw
et al. [10] as the basic metamodel for software architecture op-
erationalization.

It is worth noting that the presented architecture heavily
draws on a wide range of architectural styles like implicit invo-
cation, pipes and filters, data abstraction and layering [6],
[10]. All are based on object-orientation as the dominating
modeling and implementation paradigm. For operationalized
architecture models, we will have to draw on all of them.

Currently, a first prototype has shown that the metalevel
architecture can be implemented efficiently, but for many of the
more advanced aspects of the architecture, a reference imple-
mentation must still be done. In particular, this includes as-
pects like object synchronization, concurrency, replication
and long transactions—each an interesting research topic of its
own.

Our short to medium range research focus will rest on sup-
porting type evolution as one of the most pressing problem for
systems of this size and required reliability. In parallel, we will

work on domain model representations and their operationali-
zation. Finally, we will work on introducing and operationaliz-
ing higher level software architecture abstractions than those
of the basic object-oriented system model.

References

[1] Walter Bischofberger, Michael Guttman, Dirk Riehle and
Carl Sturmer. Global Business Objects System Object Ar-
chitecture. Zürich, Union Bank of Switzerland: 1996.

[2] Walter Bischofberger, Michael Guttman and Dirk Riehle.
“Global Business Objects.” In preparation, 1996. Contact
the authors for a copy.

[3] Bernd Brügge, Tim Gottschalk and Bin Luo. “A Frame-
work for Dynamic Program Analyzers.” OOPSLA ’93,
Conference Proceedings. See also: ACM SIGPLAN No-
tices 28, 10 (October 1993): 64-82.

[4] Barton Miller and Thomas LeBlanc (Editors). Proceed-
ings of the ACM SIGPLAN and SIGOPS Workshop on
Parallel and Distributed Debugging. ACM SIGPLAN
Notices 24, 1 (January 1989).

[5] David Garlan (Editor). Proceedings of the First Interna-
tional Workshop on Architectures for Software Systems.
CMU Technical Report, CMU-CS-95-151, 1995.

[6] David Garlan, Andrew Kompanek, Ralph Melton and
Robert Monroe. “Architectural Style: An Object-
Oriented Approach.” Submitted for publication, 1996.

[7] Gregor Kiczales, J. Michael Ashley, Luis H. Rodriguez Jr.,
Amin Vahdat and Daniel G. Bobrow. “Metaobject Proto-
cols: Why We Want Them and What Else They Can Do.”
Object-Oriented Programming: The CLOS Perspective.
Edited by Andreas Paepcke. Cambridge, Massachusetts:
MIT Press. 101-118.

[8] Robert Orfali, Dan Harkey and Jeri Edwards. The Essen-
tial Distributed Objects Survival Guide. Wiley, 1995.

[9] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L.
Ross, David M. Young and Gregory Zelesnik.
“Abstractions for Software Architecture and Tools to
Support Them.” IEEE Transactions on Software Engi-
neering 21, 4 (April 1995): 314-335.

[10] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[11] Jon Siegel (Editor). CORBA-Fundamentals and Pro-
gramming. Wiley, 1996.

[12] Richard N. Taylor, Nenad Medvidovic, Kenneth M. An-
derson, E. James Whitehead Jr., Jason E. Robbins, Kari A.
Nies, Peyman Oreizy, and Deborah L. Dubrow. “A Com-
ponent- and Message-Based Architectural Style for GUI
Software.” IEEE Transactions on Software Engineering
22, 6 (June 1996): 390-406.

