
A Generic Multicast Transport Service

to Support Disconnected Operation�y

Silvano Ma�eis

ma�eis@acm.org

Walter Bischofberger

bischi@ubilab.ubs.ch

Kai-Uwe M�atzel

maetzel@ubilab.ubs.ch

Department of Computer Science, Cornell University,
and UBILAB, Union Bank of Switzerland

Abstract

Many mobile computing applications can pro�t from
process groups and reliable multicast communication
to maintain replicated data, but most operating sys-
tems available today fail in providing the primitive
operations needed by such applications. In this paper
we describe a highly con�gurable, Generic Multicast
Transport Service (GTS), which supports the imple-
mentation of group-based applications in wide-area
settings. GTS is unique in that it o�ers fault-tolerant,
order-preserving multicast on arbitrary communica-
tion protocols, including e-mail. As another distin-
guishing mark, messages can be sent to processes even
when they are temporarily unavailable, which per-
mits disconnected operation and mobility. We further
propose an object-oriented system design consisting
of adaptor objects interconnected to form a protocol

tree. Adaptor objects o�er a common interface to dis-
similar communication protocols, and make it easy to
incorporate new protocols into GTS. Currently, GTS
is being used in a cooperative software engineering
environment and in other projects. GTS is available
for anonymous ftp.

Keywords: Disconnected Operation, Replication,
Message Spooling, Reliable Multicast, Wide Area
Networks

1 Introduction

1.1 Motivation

Groupware, replicated �le archives, and other kinds
of distributed systems stimulate the need for struc-

�Research supported by grants from the Swiss National
Science Foundation, Siemens-Nixdorf, Union Bank of Switzer-

land, and KWF/CERS
yIn: Proceedingsof the 2nd USENIX SymposiumonMobile

and Location-Independent Computing, Ann Arbor MI, April
1995

turing activities around process groups [3, 15] and
reliable, order-preserving multicast [8]. We have de-
veloped a novel communication substrate, called the
Generic Multicast Transport Service (GTS), which
enables the implementation of process group-based
applications in wide-area networks. As the main ab-
stractions, GTS o�ers reliable order-preserving multi-
cast, reliable point-to-point communication, and pro-
cess groups. A variety of transport protocols are sup-
ported and new protocols can be incorporated into
the service easily. GTS is unique in that it per-
mits disconnected operation, encrypted communica-
tion, recon�guration, and in that applications may
transmit messages without waiting until they have
been delivered.
In the GTS system model, processes become unre-

sponsive due to failures or due to disconnected opera-
tion of portable equipment. In such situations, GTS
will spool messages on non-volatile storage and de-
liver them to their recipients as soon as they become
available and register with GTS again. Addressing is
by Uniform Resource Locators similar to the World
Wide Web.

1.2 Related Work

Examples of state-of-the-art toolkits o�ering process
groups and reliable, order-preserving multicast are
Consul [12], Electra [10], Horus [14], Isis [4],
and Transis [1]. These toolkits primarily aim to
support applications running within one LAN. If a
process has been unresponsive for a certain (usually
short) period of time, their default behavior is to re-
gard the process as faulty and to exclude it from the
system. If a process or a whole group becomes un-
responsive, applications cannot submit messages to
it any more. Thus, periodic communication and dis-
connected operation are not adequately supported.
In contrast, GTS tolerates arbitrary communica-

tion delays and permits the sending of messages to

disconnected processes, both by unicast1 and mul-
ticast communication. In GTS, processes are never
excluded from the system unless explicitly requested
by the user. Electronic retail banking, cooperative
software engineering, software update protocols, dis-
tributed document servers, WAN applications to cap-
ture seismic signals, and replicated �le archives are
examples of applications which �t the GTS model.
Moreover, GTS does not compete with the aforemen-
tioned toolkits but can be used in conjunction with
them. Simply put, our scheme is well-suited for appli-
cations where disconnected operation, con�gurability,
and widely distributed resources are more important
than high-performance communication.
The Isis wide-area facility [11] is the system most

similar to GTS. At the heart of the facility lies a
fault-tolerant application spooler which is restricted
to a single LAN. Isis applications can log messages
into the spooler. An application that has failed will
restart by initiating a spool replay operation, causing
messages in the spooler to be played back to the appli-
cation. During communication failures, messages are
directed into a second spooler, called the interLAN

area, and delivered to the destination after commu-
nication is re-established. The Isis wide area facil-
ity supports process groups as well as totally ordered
and causally ordered multicast. The main di�erence
to GTS is that the Isis wide-area facility is built on
TCP, whereas GTS can run on virtually any com-
munication protocol. Further, GTS embodies a ex-
ible system design which permits to add functional-
ity such as message compression or encryption easily.
Last but not least, the wide-area facility is part of the
Isis toolkit whereas GTS is a stand-alone system. An
important advantage of the Isis facility is that it can
be replicated over a LAN to increase availability. In
contrast, a GTS LAN spooler is not replicated. How-
ever, availability can be increased by disk mirroring
and by instantiating more than one GTS server pro-
cess per LAN.

1.3 Organization of the Paper

The rest of the paper is structured as follows. Sec-
tion 2 describes the system model, Uniform Resource
Locators, and other important base concepts of GTS.
GTS' system design is addressed in Section 3. In Sec-
tion 4 the programming interface is presented along
with simple example programs. Application experi-
ence with a cooperative software engineering environ-
ment based on GTS is reported in Section 5. Finally,
Section 6 summarizes and concludes the paper.

1point-to-point communication

2 Generic Multicast Transport

Service

2.1 System Model

In our system model we distinguish between two
kinds of processes: on one side are the GTS servers,
which implement message spooling, reliable multi-
cast, and unicast communication. On the other side
stand the end-user applications, which use GTS. End-
user applications can run on both mobile (laptops,
palmtops, message pads) and immobile (hosts, work-
stations, PCs) equipment. A GTS server, along with
the applications connected to it, makes up what we
call a cluster (Figure 1). Typically, a cluster is con-
tained in one LAN or within one mobile component.
If an application in cluster A wants to send a mes-
sage to an application in cluster B, it submits it to
its server SA, which in turn sends it to server SB .
Finally, SB delivers the message to the end-user ap-
plication.
GTS permits reliable unicast and multicast com-

munication even when the underlying communication
protocol is unreliable. In multicast communication,
a sender application submits a message to a group of
receiver applications. GTS guarantees that all mem-
bers of the group receive the message, and that all
members deliver messages in exactly the same order,
which is called totally ordered multicast [8]. Mul-
ticast communication is useful for distributing the
same data from one sender to a group of receivers
e�ciently, to perform computations redundantly, or
to synchronize replicated data. GTS also supports
groups of process groups. In WAN settings, this is
useful for structuring large groups as a hierarchy of
separately maintained subgroups.
A message to a disconnected destination is retained

in the spooler of the GTS server which observes the
disconnection. As was mentioned before, a mobile
computer contains both a message spooler (i.e., a
GTS server) and one or several applications. The
server will try to deliver the message until it succeeds
or until the destination is removed permanently from
GTS. As a message travels through GTS, there will
always be one copy of it in some spooler, and the
server holding the copy is responsible for delivering it
to the destination server or to the end-user applica-
tion itself, if it runs in the server's cluster. If a GTS
server fails, then nothing is lost since messages, group
membership lists, and other important data are per-
sistent.

2

Cluster C

SC

Cluster A

SA

GTS

Cluster D

SD

hello

hello

hello

hello

hello

hello

ghdgdshgdshgdsh

klkksldklsdjsdjsskj

iowehwjehiwudwio

Cluster B

SB

Figure 1: A typical GTS system con�guration. Si denotes the GTS server for cluster i. Applications are
running on the workstations connected to their servers (Cluster A, C), on laptop computers (Cluster B), or
on personal digital assistants (Cluster D).

2.2 Uniform Resource Locators

GTS supports an unrestricted set of protocols, for in-
stance TCP, IP, AppleTalk, Mach Messages, ATM,
e-mail, and UUCP. The API which programmers
are confronted with is independent of the underlying
transport protocols, and reliable multicast interpro-
cess communication is feasible even with e-mail as
the transport medium. In consequence, the address-
ing mechanism has to be simple and exible. We de-
cided to adopt the Uniform Resource Locator (URL)

scheme proposed by the Internet Engineering Task
Force. GTS URLs obey the following general form:
protocol://cluster:server:localAddress/ticket

The following GTS URLs all denote the same desti-
nation application:
tcp://ifi.unizh.ch:claude:9999/myApp

modem://ifi.unizh.ch:claude:(41)(1)3023570/myApp

uucp://ifi.unizh.ch:claude:Uclaude/myApp

email://ifi.unizh.ch:claude:gts/myApp

The �rst part of a URL de�nes the protocol used
to deliver the message to its destination. The sec-
ond part contains the address of the destination clus-
ter. The server part contains the name of the GTS
server. Hence, several GTS servers can run within
the same cluster, if required. The localAddress is

an internal, protocol-dependent address for the GTS
server daemon, e.g. a TCP port number, a phone
number, an e-mail account, and so forth. The ticket
denotes the local application or application group the
message is directed to. Here a character string stands
for an endpoint application, a number for a group.

2.3 Privacy

GTS can be con�gured such that messages are trans-
parently encrypted and decrypted using a public-key
cryptosystem. Therefore, GTS maintains a public-
key/private-key pair per URL. Typically, a GTS
server provides the public keys of all destination
URLs its client applications will send messages to,
and it also maintains the private keys of its clients,
such that incoming messages can be decrypted. If
required, communication between a GTS server and
its clients can be encrypted as well. Message encryp-
tion is accomplished by third-party software such as
RSAREF or Pretty Good Privacy (PGP). GTS' ex-
ible system design (Section 3) permits easy incorpo-
ration of such encryption libraries.

3

2.4 Reliable Multicast Protocol

The multicast protocol we employ is similar to the
one implemented in the Amoeba [9] operating sys-
tem. For each process group, there is one GTS server
distinguished as the sequencer of the group. The se-
quencer maintains the URLs of the group members,
and requests for joining or leaving the group must be
directed to its sequencer.
To submit a multicast, the source server �rst deliv-

ers the message point-to-point to the sequencer server
of the group (Figure 2). By inspecting the ticket of
the destination URL, the server identi�es the message
as a multicast request, assigns the next multicast se-
quence number to it, looks up the URLs of the group
members in a local membership �le, and delivers the
message to the member servers. Delivery is by one
separate message per group member if the underlying
transport protocol does not support multicast, or by
one message for the whole group if all members can
be reached with the same protocol, and given that the
protocol supports multicast (e.g., IP with multicast
extensions [2]). Note that a server can be sequencer
and member of a group at the same time, and that
member applications can be contained in the same
cluster.

source server sequencer server

member servers

Figure 2: Message ow in the GTS multicast proto-
col.

Reliable multicast means that the members of a
group agree on the set of multicasts they receive. If
no damage to a source, sequencer, or member spooler
occurs2, GTS guarantees that a multicast is eventu-
ally received by all group members, and that mem-
bers agree on the order of the multicasts they receive.

2e.g., due to a head-crash or a human lapse like accidentally

deleting a spooler

hello

hello

hello

hello

hello

hello

ghdgdshgdshgdsh

klkksldklsdjsdjsskj

iowehwjehiwudwio

hello

hello

hello

hello

hello

hello

ghdgdshgdshgdsh

klkksldklsdjsdjsskj

iowehwjehiwudwio

hello

hello

hello

hello

hello

hello

ghdgdshgdshgdsh

klkksldklsdjsdjsskj

iowehwjehiwudwio

ifi.unizh.ch
claude

cs.cornell.edu pc_at_home
myApp

secure.com
venus

prep.ai.mit.edu
gremlin

myApp

Firewall

tcp

tcp email

uucp

mbone

m
bo

ne
://

ifi
.u

ni
zh

.c
h:

cl
au

de
:8

70
0/

81

Figure 3: An example situation involving cascaded
groups in a heterogeneous environment.

Consider the situation in Figure 3. Here, an appli-
cation in the cluster cs.cornell.edu sends a mes-
sage to the group
tcp://ifi.unizh.ch:claude:9999/77.

First, the sender's server delivers the message point-
to-point to server claude. Since the ticket is a nu-
meric value, claude retrieves the membership �le for
group 77 from its spooler. Assume that the �le con-
tains the entries
tcp://prep.ai.mit.edu:gremlin:9999/myApp,

uucp://ifi.unizh.ch:claude:pc at home/myApp,

email://secure.com:venus:gts/31, and

mbone://ifi.unizh.ch:claude:8700/81.

The message is multiplexed by server claude and
forwarded to the four destinations. Since the third
destination is a group maintained by the server of
secure.com, which is reachable only by e-mail, the
message is multiplexed by venus and transmitted to
the message pads. The fourth destination also is
a group; it contains members that can be reached
by the IP multicast protocol [6] (also referred to as
MBONE [2]).

4

3 Design of GTS

3.1 Protocol Tree

Several design goals guided the development of GTS:

� to support a wide range of protocols and oper-
ating systems,

� to make it easy for programmers to incorporate
as yet unsupported protocols,

� to allow programmers to include their own API,
and

� to devise a exible design which other people can
apply to their own systems.

This section focusses on the design of the GTS
server, which is implemented in the C++ program-
ming language. A GTS server is structured in a way
similar to the x-kernel [13]. Each GTS server consists
of a collection of adaptor objects plugged together to
form a protocol tree as depicted in Figure 4. The root

Checksum

Encode

UUCP EMailTCPIPmulticast

Interface
Adaptor

Utility Adaptors

Protocol
Adaptors

Actor

Crypt

Compress

GTSroot

Figure 4: A sample protocol tree.

object (GTSroot) communicates with the client ap-
plications running in its cluster. Leaf objects, called
protocol adaptors, perform unreliable message pass-
ing with remote servers by speci�c communication
protocols. The utility adaptors in the middle area
carry out tasks such as spooling and retransmission
(the Actor object), compression, encryption, encod-
ing, integrity check, and so forth in an operating
system-independent fashion. Each adaptor object
passes the messages it receives down the tree to one
of its child adaptors. A message is routed through the
tree according to the protocol part of its destination
URL until it reaches a protocol adaptor. Finally, the

protocol adaptor transmits the message to the desti-
nation server by the protocol it encapsulates.
At the destination server, the message is received

by a protocol adaptor and is passed up the tree. If
needed, it is checked, decoded, decrypted, and decom-
pressed by the utility adaptors. The Actor adaptor
spools the message to permit retransmission in case
the end-user application is not available. Finally, the
received message arrives at the GTSroot object where
it is transmitted to the end-user application. Adaptor
objects are organized in the form of the inheritance
hierarchy depicted in Figure 5. Owing to this exi-
ble system design, more than 90% of GTS' program
code could be realized in a protocol- and operating
system-independent way.

Adaptor

InterfaceAd UtilityAd ProtocolAd

C
ry

pt

A
ct

or

U
U

C
P

E
M

ai
l

T
C

P

G
T

S
ro

ot

S
im

pl
eA

pi

C
he

ck
su

m

E
nc

od
e

C
om

pr
es

s

C
or

ba
D

II

IP
m

ul
tic

as
t

La
nP

ro
to

Figure 5: Adaptor inheritance hierarchy.

3.2 Adaptor Interface

A GTS adaptor object obeys the following interface:

class Adaptor f
public:

virtual boolean down(Message&);

virtual boolean up(Message&);
virtual boolean done(Message&);
virtual boolean viewChange(Message&);

virtual boolean ush();
virtual Adaptor& attach(Adaptor&);

g;

An adaptor's down method is invoked by its father
adaptor to pass down a message. To pass up a mes-
sage, an adaptor invokes its father's up method. If
an adaptor wants to discard a message (because it
is corrupted or because it was received by the end-
user application) it invokes the done method of all its
child adaptors to ensure that they discard copies of
the message they might hold. To force an adaptor to
pass down the messages it stores, its flushmethod is
invoked. The viewChange method informs an adap-
tor that an application joined or left a local group.
Finally, the attach method is used to attach child
adaptors and thus to construct a protocol tree.

5

For example, consider an adaptor to compress mes-
sages. Its down method compresses the data in the
message, whereas its up method uncompresses the
data. done, viewChange, flush, and attach need
not be overwritten, thus the default behavior imple-
mented in class Adaptor is inherited.

4 Using GTS

4.1 Programming Interface

Actor

LanProto LanProto

GTSrootSimpleApi

Enduser
Application

GTS
Server

LAN Protocol

SimpleApi

GTSroot

Actor

Enduser
Application

a.

b.

Figure 6: Coupling end-user applications with their
GTS server.

In a LAN, end-user applications are linked with a
communication stub that governs interaction with
the cluster's server (with the GTSroot object, more
exactly). This stub consists of an interface adaptor
(SimpleApi) connected to a protocol adaptor (Fig-
ure 6 a.). The interface adaptor serves as an API
to the programmer, whereas the protocol adaptor is
used to communicate with the GTS server by a reli-
able LAN protocol like TCP or AppleTalk. In case
GTS is installed on a mobile computer, end-user ap-
plications use the same interface adaptor as above,

but can be directly linked with the server if required
(Figure 6 b.). The present version of GTS provides
the API below. As future work we plan to imple-
ment an API compatible with the Corba Dynamic

Invocation Interface [7].

class SimpleApi: public InterfaceAd f
public:

// non-blocking send:
boolean send(URL destination, const Message&);

// blocking receive:
boolean receive(OUT Message&,

URL source =anybody);
// non-blocking receive (polling):
boolean receive(OUT Message&,

OUT boolean& dataReady,
URL source =anybody);

// create a local URL group:
boolean groupCreate(OUT unsigned int& groupID);
// destroy a local URL group:
boolean groupDestroy(unsigned int groupID);
// join a URL group:
boolean groupJoin(URL group, URL member);
// leave a URL group:

boolean groupLeave(URL group, URL member);
// obtain the members of a local group:

boolean groupGetInfo(URL group,
OUT List& members);

// obtain the URL of an application:
boolean getMyURL(OUT URL& me);

g;

The send operation submits a message to a des-
tination URL without blocking the sender. To
be suspended until a message has arrived, applica-
tions issue the �rst version of receive. To wait
for a message from a speci�c sender, source is
set to the URL of that sender. Otherwise the
�rst arriving message is returned, regardless of the
sender. The second version of receive is used to
check whether a message is available without being
blocked. If a message is available, it is assigned
to the Message parameter and dataReady is set to
TRUE. groupCreate/groupDestroy are used to cre-
ate/destroy a group on the local server, groupID

holds the group ID. groupJoin is used to add a mem-
ber to a group, groupLeave to remove a member.
groupGetInfo returns a list containing the URLs of
the members of group. Finally, getMyURL serves to
obtain the URL of an application.

4.2 Con�guration

Various parameters of the GTS server can be tailored
in a con�guration �le. For instance, permission to
join or leave a group may be explicitly granted only
to applications running in a certain cluster:

6

ACCESS RIGHTS FOR LOCAL GROUPS:
#
everybody can join or leave group 1:
group 1 jl �
only applications in cluster foo.edu can join group 2:
group 2 j foo.edu

The return address assigned to an outgoing mes-
sage can be controlled as well. This is useful for tai-
loring a GTS installation to environments where a
�rewall allows TCP tra�c only in one direction, for
instance.

RULES TO SET THE RETURN ADDRESSES OF
OUTGOING MESSAGES:
#
The �lters below are applied in sequence to the
destination URL of an outgoing message until a
match occurs.
#
We request that replies to messages sent to bitnet
or small�rm.com destinations be returned to us by
email:
myurl �.bitnet email
myurl small�rm.com email
uucp destinations shall submit replies by uucp:
myurl �.uucp uucp

for the rest of the world we choose TCP:
myurl � tcp

For a cluster called secure.com residing behind a
�rewall (Figure 3), the myurl entries could be set as
follows:
myurl �secure.com tcp

myurl � email

This means that within the secure.com domain,
messages are exchanged by TCP. Replies for mes-
sages delivered to applications outside the domain
will automatically arrive by e-mail to bypass the �re-
wall. Thus, messages will be delivered by TCP in
one direction and by e-mail in the other direction.
For security, GTS can be set up such that messages
crossing domain boundaries are protected by public
key encryption (Section 2.3).
Protocol adaptors are con�gured as follows:

CONFIGURATION OF PROTOCOL ADAPTORS:
#
protocol tcp 200000 30 300 9999 unicast
protocol email 100000 3600 28800 gts unicast

protocol mbone 2048 30 300 9999 multicast tcp

In the above protocol con�guration, the second en-
try assigns a name to the protocol adaptor. Messages
traveling through the adaptor are split into fragments
whose maximum size is controlled with the third en-
try. The fourth entry gives the initial retransmission
interval in seconds, whereas the �fth entry the maxi-
mum interval. A retransmission interval is constantly
increased until it reaches the maximum value. The
sixth entry de�nes an address the adaptor uses to

check for messages, for instance a TCP port num-
ber or an e-mail account. The seventh entry declares
whether the underlying protocol supports multicast.
In case of a multicast protocol, a further entry is sup-
plied to specify by which protocol failed messages are
retransmitted. For instance, when a multicast is sent
through the mbone adaptor it is transmitted to the
group by IP multicast [6, 2]. If the message fails to
arrive at some destinations, it is transmitted point-
to-point to them by tcp. If an adaptor does not
support multicast, the Actor adaptor (Section 3.1)
transparently multiplexes a multicast to one message
per group member.

4.3 Examples

In the following example, a client application sends a
request message to a weathermap server application,
and then is suspended until a reply has arrived:

// client application:
//

SimpleApi gts;
. . .
Message request, reply;

request << "send weathermap of Detroit";

// submit the request:
gts.send("tcp://arc.nasa.gov:explorer:9999/mapServer",

request);

// wait for the reply from the map server:

gts.receive(reply,
"tcp://arc.nasa.gov:explorer:9999/mapServer");

// process received data . . .

// server application:
//

SimpleApi gts;
. . .

Message request, reply;
// wait for a request message from any source:

gts.receive(request);

// process the request . . .
// return a reply to the sender:
gts.send(request.getTrueFrom(), reply);

If the request is to be transmitted by e-mail, it is
su�cient to change the above destination URL to
email://arc.nasa.gov:explorer:gts/mapServer

In the next example, an application creates a group
on its local GTS server and sends a multicast to it:

7

SimpleApi gts;
. . .
// variable to hold the group ID:
unsigned int gid;

// get the URL of this application:
URL group;
gts.getMyURL(group);

// create a group on the local server.
// Its group ID is assigned to gid:
gts.groupCreate(gid);

// modify the ticket of my URL to obtain
// the URL of the group:
group.setTicket(gid);

Message msg;
msg << "Hello World";

// join members to the group:
gts.groupJoin(group,

"tcp://prep.ai.mit.edu:gremlin:9999/myApp");
gts.groupJoin(group,

"uucp://i�.unizh.ch:claude:pc at home/myApp");
gts.groupJoin(group,

"email://secure.com:venus:gts/31");
gts.groupJoin(group,

"mbone://i�.unizh.ch:claude:8700/81");

// submit a multicast:
gts.send(group, msg);

5 Application Experience

At the UBILAB we are currently developing Beyond-
Sni�, a platform with tools to support cooperative
software engineering [5]. For developers connected by
networks with high communication bandwidth (i.e.
in LANs), cooperation is made possible by a number
of distributed infrastructure services which rely on
Beyond-Sni�'s own mechanisms for data and control
integration. Cooperation support over networks with
low bandwidth and with portable destinations which
are only temporarily active is based on a replication
mechanism.

Replicator Client Replicator Server

File REplication Daemon (FRED)

GTS

Figure 7: Architecture of the Beyond-Sni� Replica-
tor.

In the mid-term we intend to integrate the repli-
cation mechanism into Beyond-Sni�'s infrastructure

services such that it will become as transparent as
possible to developers. To gain hands-on experience
on how a replication-based approach inuences soft-
ware development in widely distributed teams, we
have implemented and successfully applied the Repli-
cator, a stand-alone replication mechanism based on
GTS. The purpose of the Replicator is to reliably syn-
chronize any number of remote client directories with
a master directory tree. Its architecture consists of
three levels as depicted in Figure 7.
The lowest level is formed by GTS which guaran-

tees reliable data transfer between the master and the
client sites over various protocols and in spite of tem-
porarily disconnected clients. The GTS File Replica-
tion Daemon (Fred) creates, packages, transmits, and
applies incremental updates to a replicated directory
tree. Fred provides a simple command-line interface
and can be used either as a background daemon, syn-
chronizing automatically at well-de�ned time inter-
vals, or as a slave synchronizing on demand. The
highest level is formed by the Replicator's graphical
user interface which consists of a server (Figure 8)
and a client part (Figure 9). The interface mainly
serves to let users easily access Fred's functionality.
From the user's perspective, the Replicator works

as follows. To set up a synchronization group, the ad-
ministrator of the master copy de�nes the directory
to be mirrored and a further directory needed to cal-
culate incremental updates. The administrator then
de�nes which clients will be supported by specifying
their URLs as well as the personal e-mail addresses
of the persons in charge of administering the clients.
When a new client joins a replication group, a com-
plete version of the directory hierarchy is packaged
and sent to it. When a directory is updated, the
packaging and multicasting of updates to the clients
is triggered explicitly on the master site.
The client administrators are automatically noti-

�ed by an e-mail message when a data transfer took
place. The graphical user interface on the client side
(Figure 9) mainly presents lists with new and already
applied updates. Updates are explicitly applied when
it makes sense in the context of the ongoing cooper-
ation.
The implementation of Fred and of the Replicator's

user interface was straightforward (about 10 working
days) and it has proven the usefulness of GTS as well
as the adequacy of its API. Without GTS we would
not have been able to develop the Replicator in a
reasonable time. The Replicator is successfully being
applied to synchronize our joint development e�orts
between sites in Switzerland, Germany, and Austria.
We intend to make the Replicator publicly available
in the near future.

8

Figure 8: User interface of the Replicator server.

Figure 9: User interface of the Replicator client.

9

6 Conclusions

Widely-distributed systems often need to synchro-
nize replicated data in spite of disconnected equip-
ment and failures. In this paper we presented a novel
communication substrate, called the Generic Multi-

cast Transport Service (GTS), which was developed
at the University of Zurich and at the Union Bank of
Switzerland. The development of GTS was inuenced
by the results of projects such asAmoeba, Electra,
Isis, and x-kernel. GTS is di�erent from previous
work on process group-based systems mainly in that
it deals with disconnected operation and in that it fo-
cusses on widely-distributed rather than on local re-
sources. Moreover, a exible, object-oriented system
design consisting of adaptor objects interconnected to
a protocol tree has been devised. This system design
permits reliable multicasts to be issued on arbitrary
transport protocols, for example on TCP/IP or even
on e-mail, if necessary, and messages are addressed to
Uniform Resource Locators. New functionality can
be added to GTS easily by developing new plug-in
adaptors.
Presently, GTS is being used to build heteroge-

neous distributed applications interconnecting sev-
eral clusters. As an example of a real-world appli-
cation employing GTS we described Beyond-Sni�, a
cooperative software engineering environment. In our
experience, GTS is ideal for replicating data in a dis-
tributed system consisting of static and mobile com-
puting equipment. We also found that groupware
serving asynchronous forms of collaboration often re-
quires the kind of system support this paper proposes.
As future work we plan to port GTS to PC oper-

ating systems and to personal digital assistants. We
also intend to incorporate GTS into a Corba event
channel service such that widely distributed Corba

objects can communicate through GTS.

Availability

GTS is available for anonymous ftp in the directory
ftp://ftp.ifi.unizh.ch/pub/projects/gts/. In-
formation on Beyond-Sni� and on the Replicator
can be retrieved from ftp://ftp.ubilab.ubs.ch.
Universities can obtain a free copy of the non-
distributed SNiFF+ programming environment from
ftp://self.stanford.edu/pub/sniff/.

References

[1] Amir, Y., Dolev, D., Kramer, S., and

Malki, D. Transis: A Communication Sub-

System for High Availability. In 22nd Interna-

tional Symposium on Fault-Tolerant Computing

(July 1992), IEEE.

[2] Baker, S. Multicasting for Sound and Video.
Unix Review (Feb. 1994).

[3] Birman, K. P. The Process Group Approach
to Reliable Distributed Computing. Communi-

cations of the ACM 36, 12 (Dec. 1993).

[4] Birman, K. P., and van Renesse, R., Eds.
Reliable Distributed Computing with the Isis

Toolkit. IEEE Computer Society Press, 1994.

[5] Bischofberger, W. R., Kofler, T., M�a-

tzel, K.-U., and Sch�affer, B. Comput-
er Supported Cooperative Software Engineer-
ing with Beyond-Sni�. In Proceedings of the

7th Conference on Software Engineering En-

vironments (Noorwijkerhout, The Netherlands,
1995).

[6] Deering, S. Host Extensions for IP Multicas-
ting. RFC 1112, Request for Comments, Aug.
1989.

[7] Digital Equipment Corp., Hewlett-Pack-
ard Co., HyperDesk Corp., NCR Corp.,

Object Design Inc., SunSoft Inc. The

Common Object Request Broker: Architecture

and Speci�cation, Dec. 1993. Revision 1.2.

[8] Hadzilacos, V., and Toueg, S. Fault-
Tolerant Broadcasts and Related Problems. In
Distributed Systems, S. Mullender, Ed., sec-
ond ed. Addison Wesley, 1993, ch. 5.

[9] Kaashoek, M. F., Tanenbaum, A. S., Hum-

mel, S. F., and Bal, H. E. An E�cient Re-
liable Broadcast Protocol. ACM SIGOPS Oper-

ating Systems Review 23, 4 (Oct. 1989).

[10] Maffeis, S. A Flexible System Design to Sup-
port Object-Groups and Object-Oriented Dis-
tributed Programming. In Proceedings of the

ECOOP '93 Workshop on Object-Based Dis-

tributed Programming (1994), R. Guerraoui, O.
Nierstrasz, M. Riveill, Ed., Lecture Notes in
Computer Science 791, Springer-Verlag.

[11] Makpangou, M., and Birman, K. Designing
Application Software in Wide Area Network Set-
tings. Tech. Rep. 90-1165, Department of Com-
puter Science, Cornell University, Oct. 1990.

[12] Mishra, S., Peterson, L. L., and Schlicht-

ing, R. D. Consul: A Communication Substrate

for Fault-Tolerant Distributed Programs. Dis-

tributed Systems Engineering Journal 1, 2 (Dec.
1993).

[13] Peterson, L., Hutchinson, N., O'Malley,

S., and Rao, H. The x-kernel: A Platform for
Accessing Internet Resources. IEEE Computer

23, 5 (May 1990).

[14] van Renesse, R., and Birman, K. P. Fault-
Tolerant Programming using Process Groups. In
Distributed Open Systems, F. Brazier and D. Jo-
hansen, Eds. IEEE Computer Society Press,
1994.

[15] Ver��ssimo, P., and Rodrigues, L. Group
Orientation: A Paradigm for Distributed Sys-
tems of the Nineties. In Proceedings of the Third

Workshop on Future Trends of Distributed Com-

puting Systems (Apr. 1992), IEEE Computer So-
ciety.

