
This paper appeared in the Proceedings of the Eighth International Conference on Scientific and Statistical Database
Management, Stockholm, Sweden, June 1996, pp. 208-215.

Requirements and Design of Replication Services
for a Time Series Management System

Werner Dreyer, Duri Schmidt, Angelika Kotz Dittrich, Manuel Bleichenbacher
UBILAB, Union Bank of Switzerland, Zurich

{dreyer, schmidt, dittrich, bleichenbacher}@ubilab.ubs.ch

Abstract

This paper analyzes how financial researchers manage
large numbers of time series and how they work with
these data. We show that replication services are a cen-
tral facility of a time series management system and we
define the requirements for such replication services. An
evaluation of current time series management systems
shows that they do not support replication. Neither repli-
cation systems of other database management systems
nor other kinds of currently available replication sys-
tems cover our requirements. Thus, we present our de-
sign of replication services that are adapted to the needs
of time series management. It is based on a publish-and-
subscribe mechanism, a sophisticated scheduling faci-
lity, dynamic replication, and integrated directory ser-
vices.

1 Introduction

Time series are of growing importance to financial re-
searchers like economic analysts, portfolio managers or
investment researchers. These researchers employ
quantitative and statistical methods based on time se-
ries for different purposes like economic forecasts, de-
fining portfolios with a certain return/risk-ratio and pro-
posing shares to invest in.

There are various design alternatives for a time se-
ries management system (TSMS). In this paper we
discuss issues regarding centralization versus decentra-
lization of data, the degree of database management
system (DBMS) usage, and the necessity of replication
of time series. We propose an architecture that stores
all time series in databases of a TSMS. In our case,
this is the CALANDA TSMS [1] [2]. The databases are
connected by a replication system.

The examples, experiences and problems described
in this paper are taken from financial time series ma-
nagement at Union Bank of Switzerland (UBS), al-
though our investigations and discussions with other in-
stitutions revealed that their situation is very similar to
ours.

In financial institutions a typical setup is as follows
(see figure 1): first, a centralized department gets the
data from external sources like ticker services and on-
line databases and stores them in a centralized time

series base (a). This department also takes care of
tasks such as data quality management or the replace-
ment of missing values. Second, users access this time
series base to get the data they are interested in (b).
Furthermore, they also receive time series from exter-
nal sources (c). These sources can be the same as the
sources of the centralized database, or they are addi-
tional ones. The local data of the users are stored in fi-
les. Third, the researchers further process the time se-
ries (d). For example, they filter out trends to make fo-
recasts. For these purposes, they use applications like
statistics software or spreadsheets. Fourth, the resulting
data are again stored in files (e). This description does
not necessarily mean that all departments in the insti-
tution get the time series from one centralized data-
base. In large organizations, several such systems are
often operated simultaneously.

The storage of project data in files instead of data-
bases results in considerable drawbacks, such as mis-
sing concurrency control and recovery, or the difficult
manual management of a large number of files which
may even be in different formats. Additionally, project
data could also be of interest to other researchers.
However, data that are stored in local files without
global system control are hardly reusable by someone
else.

A first approach to avoiding the storage of project
data in files would consist of keeping all data in the
centralized database. To bring the data to the client
applications, researchers would directly access this da-
tabase without locally storing the data. After being pro-
cessed by the applications, the resulting time series
would be reentered into the centralized database. As
we will show in section two, an approach which uses a
system of time series bases that are connected by rep-
lication better suits our application domain.

In this paper, the terms “replication services” and
“replication system” have the following meanings: rep-
lication services encompass the functionality dealing
with the duplication of data between different data-
bases. They do not only consist of some basic functio-
nality that actually copies the data, but also of additio-
nal capabilities like the management of relations be-
tween replicates or the facilities to define replication
procedures with their specific characteristics. These
replication services are offered by a replication system.

2

External
source 1

External
source 2

External
source 3

External
source n...

Centralized
time series base

Project 1 Project 2

Spreadsheet Statistics-SW

Project
files

Project
files

Project
files

Project
files

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)(e)(e)

Figure 1. A typical setup for time series analysis.

The structure of the paper is as follows: section 2
explains why TSMSs profit from replication. Section 3
lists the requirements regarding replication that are
specific for TSMSs. In section 4, we describe other rep-
lication systems. The design of a TSMS with integrated
replication services is illustrated in section 5. Section 6
concludes the paper.

2 Reasons for using replication

There are several reasons why a TSMS should not rely
on a centralized database but on a system of partially
replicated databases. First, financial researchers often
have to be completely autonomous regarding the time
series they process. Second, the systems become more
flexible. Lastly, replication improves the availability of
the data and the system performance.

• Autonomy, local control over the data. The data that
researchers get from external or internal sources of-
ten have to be modified to be ready for further pro-
cessing in client applications. Typical modifications
are periodicity transformations, replacing missing
values, and data adjustments. Periodicity transfor-
mations are necessary to compare time series with
different frequencies, such as a time series with
daily and another with weekly events. Time series
frequently have missing events. To be usable in sta-
tistical procedures, these missing values have to be
replaced by interpolation values. Data adjustments
have various reasons like stock price adjustments
after dividend payments, error correction, smoothing
of seasonal divergences, or trend filtering. These
modifications introduce artefacts into the data. To
be able to know whether they observe facts or arte-
facts in the results of their empirical investigations,
financial researchers often prefer to do these modi-
fications autonomously on their own copy of the

data. Furthermore, there are various methods for
performing these adjustments and replacements of
missing values. If a central department within the
company maintains all time series, it has some
standardized methods to process the data. However,
depending on the intended usage of the data, some
methods may be more effective than others, or re-
searchers may want to experiment with new meth-
ods and therefore cannot work with shared data.

• Flexibility, speed of adjustments. Because the re-
searchers use a variety of methods for processing
the initial time series, they also produce many new
time series or even time series types. These dyna-
mics are difficult to manage in a centrally maintai-
ned database. Allowing the researchers to keep their
local instances of the time series, even if they deal
with the same basic data, makes the entire system
much more flexible and more easily adjustable.

• Insufficient availability and performance. If time se-
ries data are stored on a central host, there may be
a considerable performance degradation, depending
on the actual usage of the host for other applicati-
ons. Furthermore, when the central host is down, all
time series are unavailable. These problems are in-
tensified by the fact that in a large institution the
researchers are geographically dispersed, potenti-
ally over the whole world. Allowing the users to
store the necessary data locally eliminates these
problems: the availability of the data is much en-
hanced if the users can access them locally. Per-
formance improves too, because there is less access
concurrency, because the local databases are smal-
ler than a centralized one, and because they can be
tuned to the specific access patterns of the local
users. Of course, it is not sensible to replicate all
time series for all project groups. This could result

3

in unnecessary overhead for management, commu-
nication and storage requirements. Therefore, one
should consider carefully what data can be centrally
stored and what data are better replicated.

3 Required characteristics of a replication
system for a time series management en-
vironment

By examining the working style of financial research-
ers, we can identify some of the requirements of repli-
cation for that application domain.

• Users want control over replication. As shown in the
previous section, researchers explicitly want indivi-
dual copies of certain time series for specific pro-
cessing. For this reason, there cannot be autono-
mous replication of time series by the system; the
entire control concerning what time series are to be
replicated must be in the hands of the users.

• Users need to select replication schedules. Different
researchers want their replicates to be updated at
different points in time. For example, a portfolio
manager may need hourly updates of some stock
prices, while an economic analyst is satisfied with
daily or even weekly updates of the same time se-
ries. Besides, some researchers want to specify ad-
ditional conditions that restrict the update of some
replicates. For instance, an investment researcher
may only examine new data about a specific share
when its price goes beyond a certain limit.

• Replication must be unidirectional. The individual
replicates must be independent of each other: re-
searchers must be allowed to modify replicated
time series any way they want. Thus, replicates
cannot be read-only as in some other replication
systems. There are no mutual updates between rep-
licates, either. However, a time series can well be a
replication target and a source at the same time. In
this case the replication topology corresponds to a
tree. The absence of cycles eliminates all problems
regarding mutual consistency.

• The set of replicated time series can change. When
setting up a time series management environment,
it cannot be determined what data are to be replica-
ted. For example, a company-wide time series base
may increase the number of stored time series by
accessing another data provider. An investment re-
searcher may then decide to broaden the individual
set of time series to investigate, which means that
the system must allow replication procedures to be
defined or canceled at any time.

• Users need support in finding the relevant time se-
ries. A typical time series management environ-

ment consists of numerous time series spread over
many data stores. This makes it difficult for users to
find the relevant time series. The replication of time
series even aggravates the problem, because the
number of available time series is further increased.

• The replication system must be able to replicate the
schema. When a user replicates a time series for the
first time, its schema may not be in the target data-
base as yet. In that case, it must replicate not only
the data but also the schema.

• The replication system must deal with schema chan-
ges. After a time series is replicated for the first
time, the schema of either the source or the target
time series may be changed. The replication system
must detect this and handle these changes.

• Replication is asynchronous. Temporary inconsist-
encies between two time series can well be allowed
for the intended applications. Most of the time se-
ries are updated with daily or even lower frequen-
cies. Even time series bases that store tick-by-tick
data have no problems tolerating certain delays.
Synchronous replication where the changes of the
source and of the target time series are contained in
one transaction would result in considerable over-
head without obvious advantages.

4 State of the art

4.1 Current TSMSs

Current setups, as we described them in the introduc-
tory section, do not at all support replication in a satis-
factory way. Consequently, researchers perform replica-
tion manually by copying time series from the centrali-
zed time series base into files on their local data store.
Nor do commercially available TSMSs, like FAME [3]
or Illustra Time Series DataBlade [4], have any repli-
cation facilities.

In contrast to TSMSs, other DBMSs offer replica-
tion systems, and one can also find some middleware
products. To see whether these could be used success-
fully in conjunction with a TSMS, we are going to ex-
amine them in the remainder of this section.

4.2 Replication features of other DBMSs

There exists a set of replication systems designed to be
used with commercial DBMSs. They come closest to
our requirements. Most of them either originate from
vendors of relational DBMSs, or they are middleware
products targeted at relational DBMSs. Well-known
systems originate from Sybase [5] [6] [7], Oracle [5] [7]
[8], IBM [5] [7] [9], Ingres [5] [10], Microsoft [11],
Trinzic Corp. [5] [12], Praxis, Inc. [13], and Lotus [5]
[14] [15] [16] [17] [18]. Of course, these systems have

4

different strengths and weaknesses. In the following, we
give only a short survey of the main weaknesses. How-
ever, we wish to clearly state that when we say
“weakness”, we mean this from our own point of view.
Some design decisions of those systems turn out to be
a drawback for our TSMS environment, but they are
well justified for their intended application domains.

• Lack of flexibility. These systems usually define sta-
tically which databases participate in a replication,
and which data are to be replicated. Furthermore,
they employ a static replication setup, that is, the
schema of the replicated data cannot be changed
while the system is running. Last, the scheduling
facilities are rather limited. One obvious reason for
this is that most of these systems are used with rela-
tional DBMSs which also have many inherent limi-
tations. For example, the database schema cannot
be defined on the fly. Additionally, these replication
systems are typically designed for applications
whose characteristics are very different from appli-
cations that process time series. Examples are
transaction processing applications where sales and
stock data from branch stores are replicated to the
headquarters, or decision support applications where
data warehouses get some predefined set of data
from the transaction processing system. In these ap-
plications, it can be decided in advance which data
are to be replicated, the schema remains un-
changed, and the scheduling is simple, too (for ex-
ample, the transaction processing environment rep-
licates the sales and stock data as soon as possible,
the decision support system replicates the data
daily).

• No directory services. The existing replication sys-
tems do not provide any directory service functiona-
lity. This is related to the application characteristics
described before: when it is known in advance what
data are to be replicated into which database, repli-
cation does not bring up additional data retrieval
problems.

• Confinement to the relational data model. Most of
these replication systems are designed to be used
with relational database systems (gateways to some
other database systems provide only limited func-
tionality). There is no straightforward way to use
these replication systems for other database systems
that are not based on the relational model.

4.3 Further replication systems

Besides the mentioned products, there are systems like
ISIS [19], Arjuna [20] [21], OSCAR [22] [23], the SOM
replication framework [24] [25], and BOAR [26] which
also offer replication as a central or subsidiary capabi-
lity. All these systems aim at applications whose repli-

cation requirements differ considerably from time se-
ries management. They use replication mainly for per-
formance and availability improvements. Ideally, repli-
cation in such systems is transparent to users. Updates
between replicates are bidirectional. There is no flexi-
ble scheduling, changes to one replica are usually
transmitted to its peers as soon as possible. Access
may be limited while the replicas are in an inconsist-
ent state. The schema is static, there are no changes
while the system is running. None of these systems
provides a directory server.

ISIS supports the development of distributed appli-
cations by offering groups of replicated processes with
mechanisms like reliable multicast and event ordering.
Arjuna also aims at building distributed applications,
but it focuses on transactions, that is, the objects to be
manipulated are usually long-living. These objects are
potentially replicated, too. OSCAR provides weak-con-
sistency replication between databases in an internet-
work where communication is unreliable or where the
network is partitioned. The SOM replication framework
is mainly targeted at applications in domains like
computer-supported cooperative work. Here, all replica-
tes usually have the same structure as the original
data, and updates to one copy are transmitted imme-
diately to all other instances. BOAR is a library of rep-
licated objects. It provides replicated objects based on
lower-level fragmented objects. By appropriately com-
bining objects of this library, developers can realize
replicated objects with the desired degree of fault tole-
rance, availability, etc.

As the description of all these replication systems
shows, it appears that none of these systems covers our
requirements. They aim at application domains whose
characteristics are substantially different from applica-
tions that process time series.

5 Design of a TSMS with integrated repli-
cation services

To overcome the weaknesses of current solutions, we
now propose a design for a TSMS with integrated rep-
lication services, as shown in figure 2. This approach
fully relies on databases, no data are stored in files.
Moreover, there is not one centralized database, but a
number of public and project-specific databases which
are connected through replication. Directory services
support users in finding the relevant data. We will ela-
borate this design in the remainder of the section.

5.1 Time series bases, data model

In this architecture, all time series are stored in data-
bases. Time series that result from further processing in
client applications will also be stored in a time series
base. Compared to a file-based solution, this approach
bears all the advantages that databases offer, like con-
sistency maintenance or query facilities. Furthermore,

5

OECD SNB Project-specific sources

OECD

Dir. Srv.

Statistics
software

Spread-
sheet

Charting
software

Data providers

Time series bases

Client applications

Portfolio
management

Economic
research

SNB

‚

...

Directory server

Time series bases

Figure 2. A time series management environment with integrated replication services. The dark gray boxes represent
the components that offer replication services.

the client applications are less sensitive to modificati-
ons of the time series schema than they are when they
access files. The query facility of the DBMS serves as
an isolating layer between the data and the applicati-
ons. If, for example, an attribute is added to a time se-
ries, an old database query that explicitly enumerates
the resulting attributes (like “select attr1, attr2 from
...”) does not have to be modified. In contrast, if re-
searchers directly access a file, they have to know its
structure.

One could argue that the introduction of a database
raises the number of necessary data format transforma-
tions. There is not only one transformation between the
file format of the data provider and the format of the
client application, but an additional conversion into the
database import format as well. However, the introduc-
tion of an intermediary database often reduces the ne-
cessary transformations. If one uses m data providers
and n client applications, there are m·n transformations
at worst. When several client applications are used in a
row, the worst case increases to m·n·(n-1) transforma-
tions. With an intermediary format, there are at maxi-
mum 2·m·n transformations.

There is a potentially high number of autonomous
databases. Several DBMS instances may be running,
each of which possibly manages several databases.
These databases are connected by replication. All time

series bases use the same kind of database manage-
ment system, and therefore also the same data model.
In our case, this is the CALANDA TSMS with its spe-
cial-purpose time series data model. However, the da-
tabases differ in the database schema. Uniformity of
the database management system has several advanta-
ges: first, there is no semantic gap between data mo-
dels; second, researchers only have to be familiar with
the characteristics of one TSMS.

Some of these databases serve mainly to import the
data of the publicly available, external data providers.
These data are of interest to a large number of finan-
cial researchers and to various projects. In figure 2,
these would be the “OECD” and the “SNB” databases.
According to our experience, the data of each provider
are either kept in a single database or they are split
into several such time series bases. These databases
shield the users from the specifics of the data providers.
One or several specialists are responsible for a time se-
ries base. They are not only experts in the usage of the
TSMS, but they also have detailed knowledge about
the exact content of their databases. This is very impor-
tant, as most of the providers offer very limited or no
search facilities at all, and there are hardly any on-line
descriptions of the available data. These experts in-
crease the semantics of the time series that are stored
in such a time series base. For example, they bring the

6

time series into an appropriate group structure [2], or
they add additional attributes, like a comment about
the data quality or the name of the provider.

Other time series bases contain more project-speci-
fic data. In figure 2, these are the “Economic research”
and the “Portfolio management” databases. As descri-
bed in section two, researchers often first have to ad-
just the data to analyze them in the desired way. These
modifications are performed locally, because they are
only relevant to a project. The time series in such a da-
tabase stem from different sources: one part is replica-
ted from time series bases that import data from exter-
nal providers. Another part is replicated from further
project-specific time series bases. The last part origina-
tes from project-specific data sources because these
data are not of interest to a wide range of financial re-
searchers and therefore are directly entered in a project
time series base.

5.2 Publish-and-subscribe mechanism

Replication of time series is realized by a publish-and-
subscribe mechanism. If some time series are thought
to be of interest to other researchers, the owner makes
them available via publication. Published time series
are visible from outside the time series base. Users can
then browse through the published time series. When
they want a particular time series to be replicated into
their own time series base, they subscribe to it and
choose the desired replication scheduling. The replica-
tion system then automatically sets up the replication
procedures.

This mechanism best supports the necessary degree
of replication flexibility. Publishers make their time se-
ries available without having to know who will repli-
cate the data later on. They can alter the set of pub-
lished time series at any time. Subscribers can always
subscribe or unsubscribe to some time series. Of
course, the publication of data that originate from ex-
ternal providers has to accord with any contracts that
are made with these providers.

Usual publish-and-subscribe mechanisms allow
anyone to subscribe to a published item. However, this
is not always desirable in our environment, and one
prefers to restrict foreign access to certain time series.
For example, an economic researcher experiments with
a new forecast method and wishes to make the fore-
casted time series available to other researchers of the
group for comments on the methods and the results.
However, the data must not be available for further
users as long as the method is not approved. The sys-
tem must therefore offer the possibility to limit the rep-
lication of data to a restricted set of users.

A well-known application that also uses publish-
and-subscribe is Usenet [27]. Usenet has some charac-
teristics that are similar to our environment: there are
numerous news groups, the set of news groups varies

over time, and a person who posts an article cannot
know who might be interested in the article.

5.3 Scheduling

When researchers subscribe to a time series, they also
define the appropriate scheduling. As different time se-
ries use various update schedules, the replication sys-
tem must offer flexible scheduling facilities. The defi-
nition of a schedule can be compared with event-condi-
tion-action rules found in active database systems
(ADBS) [28].

Events are either temporal or non-temporal. The
most obvious events are temporal ones, that is, one
specifies the point(s) in time at which a replication is
initiated. Temporal events are either defined by one or
several explicit time points, or by a calculation rule.
Examples are “tomorrow at 4:00 p.m.”, “daily at 9:00
a.m.” or “every first working day of the month at 8:00
a.m.”. We assume that the majority of events in our
environment are temporal.

Besides temporal events, there are also non-tempo-
ral ones, like changes of some values in a time series.
The replication system must be able to detect non-
temporal events either at the source or at the target da-
tabase, i.e., one can specify pushed or pulled replica-
tion.

Conditions have the same meaning as in ADBSs,
an event only leads to a replication if the condition is
true. The action is always replication. The complexity
of event-condition-action rules for a TSMS is an open
issue. It remains to be seen how complex replication
events and conditions have to be in practice - whether,
for example, composite events are needed or not.

5.4 Dynamic replication

Dynamic replication deals with divergences of the
schema between sources and targets of replication. As
mentioned in section three, two problems may arise:
first, the target database does not yet have a schema of
the time series that is to be replicated for the first time.
Second, the replication is already set up, but the
schema of the source time series has changed, that is,
schema evolution takes place.

The first case is easy to handle. The system auto-
matically replicates the time series schema before the
time series itself is replicated for the first time.

In the second case, a semi-automatic mechanism is
employed. When one changes the schema of a time se-
ries that is a source of replication, this time series is no
longer replicated, and the owners of the target time se-
ries are notified by the system. They can then choose
whether they want their local schema to be adjusted
automatically or not. It would not be sensible to auto-
matically adapt the local schema without notifying the
user. Although the query facility of the database offers
some isolation between the schema of the database

7

and the client applications, some of the interfaces to
the client applications or the client applications them-
selves possibly need to be adjusted. For example, it
could be that spreadsheets have to be enhanced by a
new event attribute. After being notified, researchers
will usually choose automatic schema update and will
perform the necessary adaptations of the client applica-
tions. As soon as the schema is updated, replication
starts again.

A static approach would not support users in han-
dling schema changes. This is not sensible for an envi-
ronment with numerous schema changes. Additionally,
because many databases may have replicates of the
same time series, schema changes in a static replica-
tion environment cause a great deal of duplicated work.

5.5 Integrated directory services

To ease the retrieval of the relevant time series out of
many time series bases, we incorporate a directory that
stores metadata about all the published time series.
The connection between a time series base and the di-
rectory server is also realized by the replication sys-
tem. When a time series is published, a replication
task for the metadata is defined, and the metadata are
automatically sent to the directory server. When the
metadata of a time series change, the directory is up-
dated accordingly.

We distinguish between two kinds of metadata,
namely schema data and application-specific meta-
data. Schema data originate from the system catalog,
like the names and types of the attributes or the perio-
dicity of the events. These metadata are implicitly de-
fined as such. Application-specific metadata are expli-
citly defined by a user. The owner of a time series can
declare arbitrary header attributes [2] as metadata.
Usually, these will be attributes that best distinguish
between different time series.

The directory server keeps track of the origin of the
metadata that it stores. This makes subscriptions via
the directory server possible. One can issue a query
over the metadata and the directory server presents all
time series that match this query. Users can now sub-
scribe to the resulting time series in the same way as
they do when they are directly browsing through a time
series base, because the directory server sets up the
appropriate replication procedure.

The directory itself, of course, can also be replica-
ted at various sites. Mutual updates of the directories
are realized by the same infrastructure that replicates
time series.

6 Conclusion

We analyzed the way researchers manage and work
with time series. Financial researchers have special
needs regarding replication. An appropriate replication
facility is a key factor for a satisfactory solution. Cur-

rent TSMSs offer no replication functionality at all,
while the replication facilities of general-purpose
DBMSs do not cover our requirements. In contrast to
those approaches, our replication services are designed
to meet these needs.

We claim that a system based on our design helps
financial researchers in concentrating on their primary
task, namely, economic analysis. Besides, we expect
that further application areas where other statistical
data are processed have similar requirements concern-
ing replication. Thus, the DBMSs that are used for
these applications would also benefit from our work.

References

[1] W. Dreyer, A. Kotz Dittrich, D. Schmidt: Research
Perspectives for Time Series Management Systems.
SIGMOD RECORD, Vol. 23, No. 1, March 1994.

[2] W. Dreyer, A. Kotz Dittrich, D. Schmidt: An Object -
Oriented Data Model for a Time Series Management
System. Proceedings of the 7th International Working
Conference on Scientific and Statistical Database
Management, Charlottesville, Virginia USA, Sept. 28-
30, 1994.

[3] FAME Software Corporation: User’s Guide to FAME,
1990.

[4] Illustra Information Technologies, Inc.: Illustra
TimeSeries DataBlade, technical information 1994.

[5] H. Edelstein: The Challenge of Replication. Part 1 in
DBMS, Mar. 95, pp. 46-52, part 2 in DBMS, Apr. 95,
pp. 62-103.

[6] A. Moissis: Sybase Replication Server: A Practical
Architecture for Distributing and Sharing Corporate
I n f o r m a t i o n . S y b a s e W h i t e P a p e r ,
http://www.sybase.com
/Products/Whitepapers/repserver_wpaper.html, 1995.

[7] D. Stacey: Replication: DB2, Oracle, or Sybase?
Database Programming and Design, Dec. 1994.

[8] Oracle: Oracle7 Asynchronous Distributed Capability
Overview. Oracle White Paper, http://www.oracle.com
/info/products/symrep/chapter4.html, 1995.

[9] IBM Corp.: Data Replication: The IBM Solution. IBM
White Paper, May 1994.

[10] Computer Associates, Inc.: CA-OpenIngres/Replicator.
Product Description, 1994.

[11] Microsoft, Inc.: SQL Server Data Replication.
http://www.microsoft.com/SQL/sqlrevg4.htm, 1995.

12] Trinzic Corp.: InfoPump: Client/Server Middleware for
Routing, Integrating and Synchronizing Dissimilar
Data. Trinzic Product Description, 1993.

[13] Praxis International, Inc.: OmniReplicator: Concepts
and Facilities. Praxis International, Inc., 1994.

[14] Notes and Database Management Systems:
Complementary Application Types. Lotus White
P a p e r , http://www.lotus.com/corpcomm/26c6.html,
Aug. 1994.

[15] Lotus Notes: An Overview. Lotus White Paper,
http://www.lotus.com /corpcomm/2952.html, Feb. 1995.

8

[16] J. Mackenzie: Document Repositories. Byte, Apr.
1995.

[17] D. Yavin: Optimizing Notes Replication. Byte, Sep.
1994.

[18] D. Yavin: Replication's Fast Track. Byte, Aug. 1995.

[19] K. Birman, R. Cooper: The ISIS Project: Real
Experience with a Fault Tolerant Programming
System. ACM Operating Systems Review, Apr. 1991.

[20] G. Parrington, S. Shrivastava, S.Wheater, M. Little:
The Design and Implementation of Arjuna. USENIX
Computing Systems Journal, Vol. 8, No. 3, 1995.

[21] M. Little, S. Shrivastava: Object Replication in
Arjuna. Technical Report, University of Newcastle
upon Tyne, UK, Aug. 1993.

[22] A. Downing, I. Greenberg, J. Peha: OSCAR: A System
for Weak-Consistency Replication. Proceedings of the
Workshop on Management of Replicated Data,
Houston, Texas, Nov. 1990.

[23] A. Downing, I. Greenberg, J. Peha: OSCAR: An
Architecture for Weak-Consistency Replication.
Proceedings of the International Conference on
Databases, Parallel Architectures, and their
Applications (Parbase-90). Miami Beach, Florida,
Mar. 1990.

[24] IBM Corp.: SOMobjects Developer - Toolkit Users
Guide. Version 2.0, June 1993. On Apple Developer
CD Series, Nov. 1994.

[25] IBM Corp.: SOMobjects Developer - Programmers
Reference Manual. Version 2.0, June 1993. On Apple
Developer CD Series, Nov. 1994.

[26] G. Brun-Cottan, M. Makpangou: Adaptable Replicated
Objects in Distributed Environments. INRIA Technical
Report RR-2593, May 1995.

[27] Network Working Group: Network News Transfer
Protocol - A Proposed Standard for the Stream-Based
Transmission of News. Request for Comments (RFC)
977, Feb. 1986.

