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Abstract

 

During the development of Beyond-Sniff, a distrib-
uted multi-user development platform, we were con-
fronted with various, apparently unrelated problems:
data, control, and user interface integration of distrib-
uted components, system configuration, user specific
preferences, etc. Undoubtedly, it is not trivial to find
solutions for such issues, but C++ makes it even more
challenging due to its static nature and insufficient meta-
information. To overcome these shortcomings, we
implemented a small and powerful framework called
Any
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. The Any framework augments C++ with a flexi-
ble, dynamic, garbage-collected data representation
mechanism. It serves as a language-independent data
integration vehicle and provides data management and
declarative retrieval facilities.

 

1 Introduction

 

In 1991, we began to develop the C++ programming
environment Sniff [2]. Motivation for this project was
that framework-centered software development greatly
increases the requirements for development
environments [3],[5]. Furthermore, there were no pro-
gramming environments that scaled and provided the
extensive browsing support we needed.

After Sniff was successfully commercialized, we
started to work on Beyond-Sniff [4], a platform and set
of tools for co-operative software engineering. The goals
of this project are to develop a conceptual framework for
co-operative software engineering, and to build the
development environment needed for its enactment.

A software engineering environment provides sup-
port for so many different activities that a monolithic
design would make no sense. This is especially true for
co-operative software engineering environments, where
the environment also provides communication and coor-
dination support. Modern co-operative software engi-
neering environments consist of a number of integrated

 

1. The name clash of our Any framework with the
CORBA any data type is coincidental and does not
imply a similarity.

 

tools. In the ideal case their integration is so seamless
that the user believes him- or herself to be working with
a single tool.

A Beyond-Sniff environment consists of a set of
tools, which use several shared services in order to pro-
vide functionality, as depicted in Fig. 1. These tools are
relatively lightweight because much of their functional-
ity is already implemented in the shared services.

Beyond-Sniff has the following characteristics
which are especially relevant to this paper:
• It is a distributed environment built with a focus on

scalability.
• It provides data, control and user interface integra-

tion mechanisms [15].
• New tools and services can be integrated at runtime,

thus making their functionality immediately avail-
able.

• Tools and services can be substituted. Whether tools
or services are substitutable depends upon their
capabilities - not upon their implementation details,
e. g. the implementation language used.

• A user can tailor his or her environment without
affecting other users.

Beyond-Sniff has been designed and implemented
using object technology, especially framework technol-
ogy. Starting points were the application framework
ET++ [17], C++, and the current implementation of the
Sniff programming environment running on various fla-
vors of the UNIX operating system. We decided to start
under these conditions because they allow us to profit
from years of experience as well as the results of our
former work. Further information about Beyond-Sniff
can be found in [4].

 

1.1 What are the problems we faced?

 

During the development of Beyond-Sniff we were
faced with the following problems: 

 

Data integration and message exchange between het-
erogeneous, distributed components. 

 

All components
of Beyond-Sniff (tools and services) have to be able to
exchange data amongst each other. Whether the data is
exchanged or physically shared depends on its size and
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the purpose of its use. In both cases, all components
involved must agree on the meaning of the data. Its for-
mat cannot be predefined due to the openness of
Beyond-Sniff. Furthermore, it should be possible to
exchange data even if the receiver knows the sender's
data model only partially and different languages are
used.

 

Declarative data access. 

 

If large amounts of data have
to be shared and therefore made accessible, the access
should be declarative (e. g. through pattern matching or
query languages) and scalable. This makes it impractical
to use the data representation system of the host lan-
guage.

 

User interface integration mechanism. 

 

Integrating a
set of services and tools in a way that they provide the
same experience as a stand-alone tool.

 

Reconfiguration and extension of open extensible
environments. 

 

If new components can be integrated at
runtime, they must be able to inform the rest of the sys-
tem about their capabilities. Obviously, capabilities can-
not be predefined. But to make the new functionality
accessible for each user (for instance by means of a new
menu entry), tool or service, all system entities must be
ready to deal with them.

 

Schema evolution. 

 

The system has to be capable to han-
dle various data model versions of a certain service or
tool.

 

User specific tailoring. 

 

Tailoring of a user's environ-
ment requires a sophisticated preference system. Again,
the format cannot be predefined because the adjustment
features of future tools cannot be predicted. Preferences
have to be persistent beyond session boundaries.

All these problems are not specific to Beyond-Sniff.
They are common to a wide range of large systems. In
order to tackle these problems, the following require-

ments have to fulfilled. They are independent from a
specific system or application, especially independent
from Beyond-Sniff.

 

R1

 

a language-independent, extensible, self-describ-
ing (i. e., semantic, according to Sims [16]) data
representation mechanism, which can be
smoothly integrated with arbitrary programming
languages,

 

R2

 

fast, change-tolerant, alphanumeric, and binary
IO mechanism,

 

R3

 

declarative or rule-based data access,

 

R4

 

persistent data storage, and

 

R5

 

robustness due to explicit data modeling and run-
time type checking.

If a semantic data representation, a mechanism that
fulfills R1, additionally meets R2, e. g. the listed I/O
features, it can be used as a sophisticated message
exchange format. This is crucial especially for distrib-
uted systems, since it eliminates the difference between
external and internal data representation. A mechanism
that meets all requirements R1 - R5 is called extended
semantic data representation mechanism.

Obviously, there are systems that provide some of
the listed features (namely certain dynamically typed
languages and 4GLs). But there is no working system
under our given external constraints
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 providing all of
them. Therefore, we have had to invent a solution that
meets the requirements as closely as possible and fits
well into our development environment. 

Note, that the external constrains do not reduce the
applicability of our mechanism but rather makes it a

 

2.

 

These are the implementation language C++
and that the mechanism has to be integrable
with the existing code base of Sniff.

Fig. 1: Overview of Beyond-Sniff

Administration 
Tool

Annotation
Tool Sniff TurboMixer Beyond

ClassBrowser

Infrastructure
Service

Annotation
& Link
Service

Data

Dictionary

Symbol
Service

Message/Information Bus

& Service Project
Service

Service
Broker
Hierarchy

User
Specific
Tool
Managers

Applications

Services



 

3

 Anything import/export format

# array with 2 elements
{ # 1st array element; a dictionary

/LastName "Weinand"
/FirstName "André"
/Address {

/City "Mountain View"
/Street "High School Way"
/State "CA"
/ZIP 94041

}
}
{ # 2nd array element

/LastName ... ...
}

}

Fig. 2: Anything examples

Anything usage

Anything employees, anEmployee, address;

anEmployee["LastName"]= "Weinand";
anEmployee["FirstName"]= "André";

address["City"]= "Mountain View";
address["Street"]= "High School Way";
address["State"]= "CA";
address["ZIP"]= 94041;

anEmployee["Address"]= address;

employees.Add(anEmployee);
employees.Add(anotherEmployee);

 

generic solution which could be very useful in many
other cases. 

Before stepping into the Any Framework, we sketch
some related work to show our sources of influence and
inspiration. Then, we describe design and implementa-
tion of the Any Framework - our approach to an
extended semantic data representation mechanism.

 

2 Related work

 

The presented systems and mechanisms are selected
according to their contributions and ideas to meet the
given requirements R1 - R5.

 

2.1 "Anythings"

 

André Weinand introduced a semantic data represen-
tation mechanism called Anythings. He was motivated
by the following problems he had to solve with C++:

 

Dynamic Extensibility. 

 

In object-oriented systems,
many objects of the same class exist playing slightly dif-
ferent roles in the context where they are used. These
roles require the various objects to carry slightly differ-
ent information. Usually, this results either in the defini-
tion of a large number of classes, which actually should
belong to the same type, or in the definition of a compre-
hensive set of data members, which is used only par-
tially by most instances. 

The first approach is unacceptable because it results
in an explosion of the number of classes. The second
approach wastes a lot of memory. Both approaches make
the system harder to understand and force the objects to
carry only predictable information. But frequently,
developers are faced with problems where this is too
inflexible. Instances should therefore be dynamically
extensible with arbitrary information.

An interesting application of extensible objects is
information “piggybacking”. The different parts of a
framework are coupled through a sophisticated informa-
tion flow that usually involves dozens of mediators.
Assuming that different parts want to extend the infor-
mation they exchange, then the originally transmitted
object only has to be extended with that information.
This does not affect any of the mediators. 

Attaching arbitrary information reveals the necessity
for a semantic data representation mechanism (R1)
because this information has to be interpretable for the
receiver.

 

Streaming and configuration. 

 

Similar problems as
with information piggybacking occur with object
streaming. In order to rebuild an object from a stream
the knowledge of how to do so is required. Due to infor-
mation hiding, this is usually encapsulated in the
object’s class. Therefore, the creator needs access to this
code. To encode the object into a semantic data repre-
sentation, would free the stream mediators from their
dependence on this code. Note, that this actually decou-
ples the receiver of such a stream from its source. If
additionally the stream format is human-readable, it can
be used for debugging purposes as well as a simple but
flexible configuration or preferences mechanism.

 

Data structure mining. 

 

Legacy information systems
sometimes export data in more-or-less structured for-
mats. The problem is to parse the format and to dynami-
cally construct a data type, whose instances represent
the different results in a uniform way. The evolved data
type could be for instance a class in which the set of data
members correspond exactly with the set of occurred
keys.
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Anythings were designed to support solutions for the
above problems. An Anything example is shown in
Fig. 2. Their most important attributes:

• scalar data types such as integers, strings etc.,
• composed data types, e. g. arrays and dictionaries,
• automatic conversion between all scalar types, and

from scalar types to arrays,
• meta-information about the structure of dictionaries,
• garbage-collection based on reference counting, 
• human readable streaming format.

These data types are mainly derived from languages
like AWK or Perl which incorporate highly flexible data
structures like arbitrary nested associative arrays. 

Anythings are highly flexible and well suited for a
many tasks in small-scale development. They meet R1
and partially R2. However, their high convertibility vio-
lates R5 and makes them dangerous to use as an
exchange mechanism in large distributed systems like
Beyond-Sniff. There, the components have to negotiate
and use a common data model. The data itself, not the
access operation, should decide about the type of the
accessed data. 

Furthermore, to represent entire data models it is
necessary to have additionally higher level data types,
such as classes., A type system that provides classes and
as much of the Anything's flexibility as possible, proved
to be better than the pure Anythings. Such a system is
just as applicable as Anythings - but safer, because it
meets R5. 

Anythings were not only the inspiration for the Any
Framework, but were also our first code base.

 

2.2 Smalltalk Meta-Classes

 

Reflection is indispensable for a semantic data repre-
sentation mechanism. It is a prerequisite for dynamic
type checks, related operations, and therefore the best
way to make the data representation self-describing and
robust (R1, R5). Reflection can be found in many
dynamically and statically typed languages or systems.
Usually, the implementation of these features is quite
similar to their realization in Smalltalk [10]. For each
structural entity there is an object describing it. 

 

2.3 NewtonScript

 

Beside Anythings, we consider NewtonScript
another source of inspiration, especially in consideration
to the requirements R3 and R4. NewtonScript is the pro-
totype-based object-oriented programming language for
the Apple Newton. The basic entities in NewtonScript
are frames. A frame consists of various named slots
which can hold either a scalar or composed data item or

a functional block known as method. NewtonScript
introduced a structuring concept called soups. 

"... soups are persistent storage objects that hold
collections of related data items called entries,
which are frames ..." [1]. 

Soups do not define an internal structure, they only
serve as a grouping mechanism. They are object pools
and may not be recursive.

Soups are very useful in their role as natural scopes
for retrieving particular frames or objects, which is of
great importance for R3. Some systems like ET++
already have a technically quite similar mechanism fre-
quently called the “object table”. In contrast to
NewtonScript's soups, the object tables are usually used
as a hidden, internal book-keeping mechanism to imple-
ment reflection and not as a grouping concept.

 

2.4 ODMG Object Database Standard

 

The ODMG Object Database Standard defines an
intuitive object query language. We found the declara-
tive aspects (R3) of OQL [7] convincing. It is well
designed for class based object systems and is based on
the proven concepts of a query language.

 

2.5 CORBA and RPC

 

RPC [6] and CORBA [13] are widely accepted and
used. These techniques prove a good fit for distributed
systems solving exactly defined tasks. However, their
design does not take adequately into consideration the
facts that systems have to exchange large amounts of
arbitrary structured data and that they evolve over time.

 

Evolution. 

 

With both techniques, the developer imple-
menting the changes has to rebuild even those clients
that do not use the new extensions or are not affected by
the changes of their servers. This shows that this kind of
static interface definition is not as evolution-friendly as
we expect it to be for Beyond-Sniff, or generally, large
distributed systems.

In contrast to RPC, CORBA reveals less resistance
to changes, but only if either 
• interfaces are regularly extended by means of inher-

itance or 
• the IDL data type "any"
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 is used. 

Necessary changes can be realized by interface
inheritance only in few cases. More often, many small
changes have to be made, for example few signatures

 

3. IDL-any is used for the data type any in IDL-
scripts as well as for their related structures in the
actual implementation language as defined by the
CORBA standard.
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have to be changed at just one position of the parameter
list.

Using IDL-any, the signature changes could be
encapsulated by shifting changes from the type level to
the runtime structure of data items. Numerous
approaches are possible: a) each parameter list consists
just of one IDL-any, b) each parameter list includes an
IDL-any at its last position, c) only parameter lists which
are intended to be extensible include an IDL-any.
Changes can then be performed entirely on the structure
of the IDL-any, which does not affect the original signa-
ture. 

 

Data exchange. 

 

A related problem to evolution is data
exchange. The physical exchange of structured data is
limited within CORBA to the IDL data types or, within
RPC, to the data types provided by the RPC’s data repre-
sentation mechanisms like XDR. In many cases this
does not satisfy the needs of the applications built on top
of them. IDL-any can be used to encapsulate the actual
exchanged data structure.

 

Problems with IDL-any: 

 

Evolution as well as data
exchange can be tackled by means of IDL-any. But in
both cases there are several risks. Followingly, we
describe two problems of the application of IDL-any.
• In large systems the IDL-any can only encapsulate

an extended semantic data representation mechanism
because of its lack of abstraction and flexibility.
Why?

An IDL-any instance can represent an arbitrary
data graph. The leafs are either IDL’s basic types,
constructed types, templated types, or arrays. 

The CORBA standard defines just the basic opera-
tions needed to deal with such data graphs. There are
no general mechanisms for comparing, sub-graph
matching, iteration and similar operations. Further-
more, there is no concept of structural equivalence of
particular data graphs, which reveals the lack of
means for classification. This implies that each IDL-
any has to be individually treated and that the basic
operations have to be implemented by everybody,
who intends to use IDL-any intensively.

Beside these lacks of abstraction IDL-any is com-
pletely limited to such data graphs. There is no
abstraction for dynamic data structures like dictio-
naries. Although there are ways
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 to emulate dynamic
data structures, the usage of these constructions

 

4. An IDL-any could be used to represent a particular
value of a dictionary. It cannot be used to represent
the concept dictionary. This would be possible
through a combination of CORBA objects, which
would represent the concept and use IDL-any to
transfer values between them.

 

would rely on various conventions and therefore be
clumsy to use.

IDL-any meets requirement R1 only partially
because of its lack of extensibility, whereas it meets
R2 almost completely (except the alphanumeric rep-
resentation). I/O mechanisms are intrinsics of the
concrete CORBA implementations. Furthermore,
the intended usage of IDL-any is limited to CORBA
applications which makes it hard to use in other
applications.

• The CORBA-defined broker algorithm bases on stat-
ically defined interfaces. Signature changes have
therefore strong impact on the actual behavior of this
algorithm. This is no longer true as soon as IDL-any
are used to encapsulate signature evolution. 

Under this point of view, the integration of an
extended semantic data representation mechanism
with IDL-any can only be a pragmatic solution. In
the long term we consider it indispensable to turn
IDL-any into a semantic data representation mecha-
nism itself. It should meet at least R1, R2, and R5
and considered accordingly by the object broker
algorithms.

 

2.6 NEWI

 

NEWI [11] is an integration environment for co-
operative business objects (CBOs). It has to cope with
some of the problems listed above: Flexible data and
control integration between distributed, heterogenous
components. It tackles the problems in a manner quite
similar to Anythings. The NEWI equivalent to
Anythings are so called Semantic Data Streams (SDS).
NEWI prefers semantic data streams instead of interface
definition languages such as CORBA-IDL, for reasons
similar to the problems mentioned in section 2.5 [16].

 

3 The design of the Any Framework

 

In the following chapter we present Anys, our design
of an extended semantic data representation mechanism,
that has the features (R1-R5) we presented above. Some
implementation details of the various language bindings
follow. The usability of Anys will be demonstrated with
two real world examples.

 

3.1 Introduction

 

The Any Framework comprises scalar and com-
pound data types. Additionally, it contains a object-
based data type called AnyFrames. Object-based means
that AnyFrames do not support methods. The structure
of an AnyFrame is defined by its class. Single inherit-
ance between classes is supported. Frames are rather
similar to objects, except that they do not have attached
functionality. Frames can be grouped by AnySoups.
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Soups provide declarative retrieval facilities as appropri-
ate means to describe sets of frames. Each soup can
manage an arbitrary number of indices. Indices are used
to control and speed up frame retrieval. They are well
known from database technology. 

Beyond all the features listed in section 1.1, we gave
Anys a few more to make their usage more convenient:

• Anys are very flexible and dynamic. At lifetime, the
relations between them usually tend to be so com-
plex that it would require tremendous efforts from a
programmer to care about their memory manage-
ment. Therefore, Anys are garbage-collected. This
enhances their fit with languages like Smalltalk and
makes the C++ programmer's life easier.

• Anys are closely integrated into the host language.

AnyContext *gContext;

void InitSymtab() {
AnyFrameDesc value(gContext, "AnyNodeValue",

"Description", new AnySlotDesc("AnyString"),
"PropertyList", new AnySlotDesc("AnyDict"),
"Deletable", new AnySlotDesc("AnyBool"),
0);

AnyFrameDesc node(gContext, "AnyTree",
"Name", new AnySlotDesc("AnyString", eSingleValue | eMustHave),
"Value", new AnySlotDesc("AnyNodeValue"),
"Children", new AnySlotDesc("AnyTree", eMayNotRemove),
0);

}

AnyFrame MakeTree() {
AnyFrame rt(gContext, "AnyTree", "Name", new AnyString("Root"), 0);
AnyFrame n1(gContext, "AnyTree", "Name", new AnyString("Node1"), 0);
AnyFrame n2(gContext, "AnyTree", "Name", new AnyString("Node2"), 0);

AnyDict pl;
pl.Append("A", 1);
pl.Append("B", 2);
pl.Append("C", 3);

AnyFrame v(gContext, "AnyNodeValue",
"Description", new AnyString("Value of Node 1"),
"PropertyList", &pl,
"Deletable", new AnyBool(TRUE),
0);

rt.Append("Children",n1);
rt.Append("Children",n2);
n1.Append("Value", v);
n2.Append("Value", v);

return rt;
}

main() {
gContext= new AnyContext();
InitSymtab();
AnyFrame tree= MakeTree();
cerr << "The name of the root node is " << tree.At("Name").AsString() << "\n";
PrettyAnyWriter().WriteAny(cout, tree.ContAt("Children"));

}

Fig. 3: Any code example
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Smooth bi-directional conversation facilities
between the host language's data world and the Any
data world exist. Each Any implementation has to
provide a comprehensive set of built-in transforma-
tions. 

• Furthermore, it should be possible to consider data
items of the host language's world as parts of the
Any world without having to transform them in
advance. For instance, it should be possible to plug a
C++ object into an Any. This requirement conflicts
with language independence. A pragmatic solution is
that the plug, like the C++ object, is only visible
inside the Any for the component that created it. It
can be neither streamed out nor streamed in.

 

3.2 Remark to the C++ code examples

 

In order to illustrate the definition, the text includes
concrete C++ code examples. To understand these
examples some knowledge about the C++ implementa-
tion of Anys is indispensable. Anys are implemented
according to the handle/body class idiom; more exactly,
the reference counting idiom. In [8] Coplien explains:
"Use of two (or potentially more) classes where an
instance of one serves as a manager for instances of the
other is called the handle/body class idiom. ... When the
body class contains a reference count manipulated by
the handle class, such use is called reference counting
idiom." The Bridge Pattern [9] describes a more general
form of the handle/body idiom. The code examples only
show the handle class.

 

3.3 Basics

3.3.1 Scalar and composed types

 

Anys comprise the following scalar data types:
AnyBool, AnyInt, AnyDouble, AnyString, AnyProxy,
and FlatAnys:
• AnyStrings are symbols in Smalltalk terminology. If

several AnyStrings have the same value then they
refer to the same string. Indeed, strings exist only
once.

• AnyProxies are used to bind any kind of object or
data of the host language's world into a composed
Any.

• FlatAnys are specialized AnyStrings. FlatAnys rep-
resent composed Anys that are streamed into a
string. This makes it possible to partially delay the
reconstruction of Anys when reading them from a
stream. This is crucial, if large amount of data are
transferred. Furthermore, comparing two FlatAnys
checks the structural equality of the represented
composed Anys.

The composed data types are AnyArray and
AnyDict:

• An AnyArray is a flexibly growing array of Anys.
• An AnyDict, is an array of slots addressed with

AnyStrings, containing zero, one, or more Anys.
Inserting an Any at a slot which does not yet exist
results in its creation.

 

3.3.2 Frames

 

AnyFrames are like specially typed AnyDicts. The
types define classes over the structure of the
AnyFrames. A class defines the names of all slots, their
types, properties, and values, as well as their number
and sequence. 

In the Any system, classes are represented by
AnyFrameDescs, an abbreviation for AnyFrame
descriptor. An AnyFrameDesc is a sequence of
AnySlotDescs. The explicit representation of classes
and their structure makes it possible to extend the type
set or certain types at runtime and to dynamically check
the type of a frame.

Runtime errors occur when accessing an AnyFrame
at a non-existent slot or inserting an Any at a slot for
which no AnySlotDesc exists in the frame's
AnyFrameDesc.

AnyFrameDescs are shared between AnyFrames
within a soup or context. Soups and contexts are
described in section 3.4.1. Fig. 3 shows a simple and
instructive Any example.

 

3.3.3 Semantic streaming

 

Anys have only a very limited built-in streaming
facility. The produced stream does not ensure that a
structurally identical Any can be reconstructed. If the
case demands it, the semantic streaming facilities pro-
vided by AnyWriters and AnyReaders must be
exploited. An AnyWriter is a visitor [9] that travels over
the structure of a given Any and writes a self-describing
output format onto a given stream. Consequently, an
adequate AnyReader can reconstruct an identical Any
from that stream. 

The following reader/writer pairs must be provided
by an implementation:

• schema-tolerant, ASCII-based reader/writer,
• schema-intolerant, ASCII-based reader/writer,
• binary-reader/writer.

A schema-tolerant, ASCII-based reader/writer pair
is the ideal instrument for semantic streaming. The
writer also streams the complete meta-information, e. g.
all necessary type information and AnyFrameDescs.
The reader can then reconstruct even AnyFrames whose
classes were previously unknown to it.
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Schema-intolerant reader/writer pairs include the
basic type information but not the AnyFrameDesc. If a
reader is forced to rebuild an AnyFrame without know-
ing its AnyFrameDesc, this results in a runtime error as
opposed to the alternative of constructing an AnyDict.
Fig. 4 shows the semantic streaming output of the
schema-tolerant, ASCII-based PrettyAnyWriter of
Fig. 3.

 

Fig. 4: Semantic Streaming

 

3.4 Advanced features

 

Additional features are necessary to sensibly use
Anys, especially AnyFrames. These features are soups
and a declarative data access within soups. 

//Any:PrettyAnyIO
[2
    <
       "AnyTree"
       "Name"
         [1  "Node1" ]
       "Value"
         [1
             <
                "AnyNodeValue"
                "Description"
                  [1  "Value of Node 1" ]
                "PropertyList"
                  [1
                     {
                         "A"
                           [1  1 ]
                         "B"
                           [1  2 ]
                         "C"
                           [1  3 ]
                     } &10
                  ]
                "Deletable"
                  [1  T ]
            > &5
         ]
       "Children"
         [0 ]
   > &0
    <
       "AnyTree"
       "Name"
         [1  "Node2" ]
       "Value"
         [1 *5
         ]
       "Children"
         [0 ]
   > &20
]

 

3.4.1 Soups

 

Soups have been introduced mainly for two reasons:
• An easy to use utility to structure AnyFrames into

disjunct, retrievable, changeable sets is considered
indispensable. AnyArrays could serve a similar pur-
pose with the drawback that the programmer has to
insert each AnyFrame manually. An AnyFrame
should be inserted automatically into a given soup at
the point of its creation and removed at destruction
time.

• Soups in the Any system play the same role as name
spaces in C++. All AnyFrames of a soup share their
AnyFrameDescs, which are only valid in their soup.
This mechanism enables the use of efficient,
schema-intolerant AnyReader/Writer pairs. Assume
that all AnyFrameDescs between two soups are
identical. It is then sufficient to transmit the raw data
of an AnyFrame without additional meta-informa-
tion.

The two purposes of soups are so fundamental that
we defined two abstractions. An AnyContext maintains
a table of AnyFrameDescs. Therefore, an AnyFrame
can only be created within an AnyContext to be able to
locate its AnyFrameDesc. An AnySoup, which is
derived from AnyContext, additionally manages a col-
lection of AnyFrames and provides query based
retrieval and locking support on it.

 

3.4.2 Querying and indexing

 

AnySoups support declarative access to their
AnyFrames. In contrast to navigating access, declarative
access allows a set of AnyFrames to be described. It
avoids the need to iterate over all of them and to check if
they match a certain pattern. AnySoups incorporate an
OQL query processor [7] which can evaluate any OQL
query and delivers an AnyArray with all the matching
AnyFrames. We chose OQL because it is an object-ori-
ented standardized query language that matches well
with our AnyFrame concept.

Query evaluation can only be performed reasonably
fast on large AnySoups if they support comprehensive
indexing. Indices are managed by AnyIndexManagers.
Each soup can have an arbitrary configurable set of
index managers.

An implementation has to provide at least the fol-
lowing index managers:

• the OnlyOneIndexManager, which actually provides
no index, or with other words all frames are in the
same index,

• the StandardIndexManager, which manages a sepa-
rate index for each AnyFrame type. 
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Fig. 5 demonstrates two OQL queries. Note, that
slots in AnyDicts as well as in AnyFrames are multi-val-
ued. To access all values at once, the All method has to
be used. By convention, ALL_<name> is always the
name of an index.

 

Fig. 5: An OQL-query for Anys

 

3.5 Discussion of language binding problems

 

Implementations of Anys exist in C++, Smalltalk
and Python. This allows us to exchange Anys between
programs written in these languages. 

In C++ as well as in Smalltalk, we developed frame-
works to implement Anys. Different tasks require differ-
ent degrees of exploitation of a used mechanism. To
make the use of a solution always profitable, the inter-
face has to provide various layers of abstraction. Frame-
works are an appropriate tool to realize this. 

Obviously, the design of, and the effort needed to
implement, these frameworks depend upon the underly-
ing platform; just have a look at garbage collection! In
C++ the reference counting idiom had to be imple-
mented. The handle and body classes and all assignment
operators had to be implemented. In Smalltalk, garbage
collection is for free. 

# Returns an array of AnyDicts containing class name/method
# name-pairs for all classes except class Any and all 
# “Impl”-classes where the method names are not Get or Set.

select struct(ClassName: x.Name,MethodName: y.Name)
from 

x in ALL_Class, 
y in x.All("MethodDef")

where 
x.Name != "Any"
and not x.Name.Match("Impl")
and y.Name.Match("^[GS]et")

# Returns type and name of all classes, method 
# implementations, and includes

define symbols as
( select struct( type: "Class", Name :sym.Name)

from sym in file.All("Class")
) + ( select struct( type: "MethImpl", Name :sym.Name)

from sym in file.All("MethodImpl")
) + ( select struct( type: "Include", Name :incl.Name)

from incl in file.All("Include"),
);
select symbols
from file in ALL_SymtabFile

 

3.5.1 Smalltalk

 

We shall shortly present the two main alternatives to
integrate Anys with Smalltalk. We had the choice of
implementing Anys according to their definition, or to
integrate them seamlessly with the language. The excel-
lent dynamic features of Smalltalk would make this pos-
sible.

All scalar data types as well as AnyArray and
AnyDicts could be mapped to Smalltalk intrinsics. For
each AnyFrame type, the system could dynamically
generate a structurally equvivalent Smalltalk class. In
order to be able to distinguish these classes from ordi-
nary Smalltalk classes, which is necessary for stream-
ing, all these classes had to be derived from a single
special root class. This seems to be a promising
approach, but raises various problems.

If class definitions are changed at runtime, which has
to be possible with Anys, then maybe large parts of the
application have to be recompiled.

The programmer is no longer conscious that he or
she is working with data that is possibly shared between
various components in a distributed system. While
designing and programming with Anys, we found it
very helpful to be constantly reminded of the different
purposes of Anys and ordinary data. The programmer is
much more aware of the fact that the components
exchange messages between each other.

 

4 Application of the Any Framework

 

Next, we will demonstrate the usage of Anys by the
example of the implementation of Beyond-Sniff’s ser-
vice architecture. First, we describe how Anys ease the
implementation of an infrastructure for distributed ser-
vices. Second, we show how we used Anys and
Python [14] to make services more flexible and adapt-
able at runtime.

 

4.1 Beyond-Sniff’s service framework

 

Anys by themselves are only an extended data repre-
sentation mechanism. In order to make them sensibly
applicable in the intended context of distributed sys-
tems, they must be embedded in a proper infrastructure. 

As depicted in Fig. 1, Beyond-Sniff follows a ser-
vice architecture. All services, independent of their
actual task, share common characteristics. They provide
synchronous and asynchronous point-to-point or multi-
cast communication and request handling facilities.
Consequently, messages are encoded as AnyFrames,
which include the transmitted information as well as the
usual information like sender, receiver, sequence num-
ber, and so on. This information of course is also an
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Any. NEWI [11] uses a rather similar mechanism to
make co-operative business objects (CBOs) communi-
cate language-independently.

Clients and services have to communicate efficiently.
Therefore, they negotiate the actual communication con-
text in respect to their capabilities and technical environ-
ment. The context mainly consists of a common data
model and reader/writer pair that appears to be most effi-
cient.

The Any message stream format is determined by the
kind of underlying computer architecture of the involved
parties. They use binary streaming if both are sitting on
top of the same architecture. Beside the negotiated
reader/writer pair, more descriptive pairs can always be
used. If a message in a more tolerant format arrives, the
receiver dynamically selects an appropriate reader.

Data model negotiation is rather simple. The client
downloads the server’s AnyContext, e. g. its set of
AnyFrameDescs, and uses it to create service requests.
The service is committed to serve such requests. Fur-
thermore, a client can send any arbitrary request which
might not be provided by the server. In this "trial and
error" case, the client has to use schema-tolerant stream-
ing.

Service functionality can be invoked dynamically by
sending a request directly to the service or by using a

service proxy. From the client’s point of view, the proxy
provides the service although it is just a front end to the
real service. This mechanism is provided by a service
framework in C++, depicted in Fig. 6. Additionally, it
provides indispensable functionality for a distributed
infrastructure such as service management, including
finding and launching of appropriate providers, monitor-
ing, load balancing, and more.

So far, the service framework solely exploits the
basics of Anys. AnySoups with their querying facilities
make large-scale data sharing and integration feasible
without major effort. Therefore, we introduced informa-
tion services. An information service manages an
AnySoup and lets its clients manipulate and ask queries
about the soup’s content. In the service framework we
provide different abstractions to the concept of an infor-
mation service, as depicted in Fig. 6.

Visualizing and interactive editing of Anys is almost
trivial due to their reflective nature. We exploit this to
build generic message-monitoring tools and information
service inspectors. Each message can be graphically dis-
played and manipulated, if necessary. The same is true
for the soup managed by an information service. Fig. 7
shows the Generic AnyOutliner and the Generic
AnyFrameEditor.

Fig. 6: The Beyond-Sniff client-service framework
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Fig. 7: AnyOutliner and AnyFrameEditor

 

The AnyFrameEditor can also be used to create any
kind of form-based input dialog cheaply. The data struc-
ture to be filled up by using the form, has to be modeled
only as a particular AnyFrame. The frame’s content can
be manipulated with the AnyFrame Editor, which
dynamically creates the needed form.

 

4.2 Introducing scriptability into services

 

Services, especially in a software development envi-
ronment like Beyond-Sniff, should be highly flexible
and adaptable at runtime. Consequently, services have to
have a reflection and a behavior manipulation compo-
nent. The latter is responsible for providing the
demanded flexibility. This can be achieved most com-
fortably by incorporating a scripting language with the
services. We chose Python for this purpose. 

The integration of Python with our C++ service
framework was fairly straightforward. We extended the
service interface with two new requests: EvalScript and
InstallRequestHandler. EvalScript is used to evaluate a
given script in the receiver’s context. With

 

InstallRequestHandler the authorized client can over-
write a particular request handler of a service with a
Python script. For information about the integration of
Python and C++ consult [14].

As already mentioned, Anys work as a data integra-
tion mechanism between different languages. The inte-
gration of Anys into Python enables the scripts to work
with the data of the C++ service, such as the AnySoup
of an information service. Fig. 8 shows this.

 

Fig. 8: A scriptable Beyond-Sniff service

 

5 Experience and conclusions

 

Anys are a language-independent semantic data rep-
resentation mechanism which provides semantic
streaming, soups, and OQL-based data access. They
help the programmer to combine the strength of stati-
cally-typed languages like C++ with the convenience of
dynamic, extensible, and object-based data types. Anys
are widely applicable. Undoubtedly, they are most prof-
itable in the context of distributed systems and language
integration. We presented this by the example of the
Beyond-Sniff service framework, written in C++, as
well as the integration of Python into those services.
Both examples represent heavily used mechanisms
which are crucial to the Beyond-Sniff project. We can
state that Anys proved their usefulness and applicability
in large-scale development.

Anys do not provide facilities to attach functionality
to certain slots as NewtonScript or Self do [18]. In the
context of language-independent data integration, this
would allow the introduction of data encapsulation and
information hiding. Currently, either each client has to
know how the provided data must be used to compute
certain functions, or their results have to be part of the
data. Function-slots would avoid such redundancies.
Although we consider this feature useful, we decided
not to implement it, since the integration of a scripting
language has sufficiently met our requirements.
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Further work on Anys will have to be done in the
field of internationalization. Probably, we will provide
two different AnyString implementations; one working
with unicode characters, the other supporting character
code pages.
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