
Evolving a Programming Environment Into a
Cooperative Software Engineering Environment

Walter R. Bischofberger, Kai-Uwe Mätzel Christian F. Kleinferchner

UBILAB, Union Bank of Switzerland TakeFive Software GesmbH, Austria
Bahnhofstr. 45, CH-8021 Zurich Jakob-Haringer-Str. 8, A-5020 Salzburg

{bischofberger, maetzel}@ubilab.ubs.ch kleinferchner@takefive.co.at

Teamwork is a prerequisite for the development of large complex software systems. In
conventional software engineering coordination of teamwork is achieved by exchanging
formal documents and by providing support for keeping these documents consistent
while several developers are evolving them. In order to support teamwork more
effectively it is either possible to provide better support for the conventional software
engineering approach or to move the focus beyond coordination towards cooperation.

Each of the two follow-up projects of the Sniff project take one of these approaches.
The commercial SNiFF+ project lays emphasis on the seamless integration of a
programming environment and configuration management systems. The research
oriented Beyond-Sniff project concentrates on the search for new approaches to
supporting cooperative software engineering. 1

1 Motivation and Overview
Software systems tend to have a more and more complex and
comprehensive view of the application domains they model. The
complexity of these systems goes hand in hand with the difficulties (the
amount of efforts to be invested for their development) arising during
their development. This is an important reason why the implementation
of even modest software systems can only be carried out effectively as
an iterative and cooperative process.

Communication and coordination are prerequisites to successful
cooperation. Their quality strongly affects team productivity and the
quality of the resulting products. Unfortunately, the costs of satisfying
communication and coordination needs, quickly reach unacceptable
dimensions. These costs naturally limit the size of closely cooperating
teams and therefore, also the size and complexity of projects that can be
carried out cooperatively.

Since we have (or want) to stretch the limits created by the negative
side effects of cooperation, we need methods and tools that explicitly
address communication and coordination. The provision of suitable
methods and tools and their application are the core of an emerging
discipline that is called cooperative software engineering.

The SNiFF+ and Beyond-Sniff projects are follow-up projects to the
Sniff project carried out at UBILAB of Union Bank of Switzerland during
1991 and 1992. The result of the Sniff project was a working prototype
of a full-featured comprehensive C++ development environment with a

                                    
1 Published in Procs. of CONSEG 95, New Delhi, February 1995.



- 2 -

special focus on openness, scalability, and browsing of large software
systems [Bis92].

SNiFF+2 is a commercial product which is a direct evolution of Sniff.
Beyond-Sniff [Bis94b] is a research project that investigates concepts,
architectures, and tools for cooperative software engineering. Both
SNiFF+ and Beyond-Sniff intend to support large numbers of developers
in cooperatively developing large software systems.

The SNiFF+ project takes an evolutionary path by refining known
approaches to configuration management. The Beyond-Sniff project
takes a revolutionary approach by building an innovative platform
which makes it possible to closely integrate large numbers of tools
applied by large numbers of developers and by writing tools on top of
this platform which support cooperative software engineering in
innovative ways.

The aim of this paper is to explain how the SNiFF+ and Beyond-Sniff
development environments support cooperative software engineering. It
starts with a short definition of our understanding of cooperative
software engineering in Section 2. Sections 3 and 4 explain the aspects of
SNiFF+ and Beyond-Sniff that relate to cooperative software engineering.
Section 5 presents a summary.

2 Terminology
The terms "cooperative software engineering" and "computer supported
cooperative software engineering" are used in different contexts with
different meaning. From our point of view cooperative software
engineering comprises all software engineering methods, norms and
tools that support teamwork flexibly and effectively [Bis94b].
We assume an intuitive understanding of the term cooperation.
Cooperation usually implies shared goals among different actors [Mal94].
Coordination is managing dependencies between activities. Coordination
is an important part of cooperation.

We identify two forms of cooperation, policy-driven and informal
cooperation. Policy-driven cooperation is done by exchange and correct
handling of well-structured documents and concurrency control
regarding the access to artifacts. Informal cooperation is characterized
by the unrestricted exchange of structured or unstructured information.

Configuration management as defined by conventional software
engineering is a subset of policy-driven cooperation. Examples for
informal cooperation are the provision of textually annotated artifacts,
e-mail messages, or the extraction of information from source code.

                                    
2 SNiFF+ runs on most Unix platforms and is free for universities. It can be downloaded by ftp from

ftp.eunet.co.at (/pub/vendor/takefive) or from self.stanford.edu (/pub/sniff).



- 3 -

3 Cooperative Software Engineering with SNiFF+
One of the incentives for the evolution of SNiFF+ was to provide support
for the cooperative development of large software systems. The
integration of proven version control and configuration management
technology was therefore a logical step. No efforts have been taken to
provide specific support for informal cooperation yet.
This section discusses how SNiFF+'s configuration management system
supports policy-driven cooperation and which aspects of SNiFF+ ease
informal cooperation.

3.1 Policy-Driven Cooperation with SNiFF+
Software configuration management is beneficial for any large software
system that, due to its complexity, cannot be made perfect for all the
uses to which it will be put. Such a system will be subject to numerous
and sometimes conflicting changes during its lifetime, giving rise not to a
single system, but to a set of related systems, called a “system family”. A
system family consists of a number of components that can be
configured to form individual family members. A substantial number of
the components must be shared among members to make the family
economically viable. Maintaining order in large and expanding system
families is the goal of configuration management. [Tic88]

Effective software configuration management coordinates
programmers working in teams. It improves productivity by reducing or
eliminating some of the confusion caused by interaction among team
members. [Tic88]

Coordination of concurrent development is therefore one of the major
task of configuration management. Pessimistic and optimistic approaches
to coordination are distinguished today [Sch93].

Pessimistic coordination means that all developers work on the same
artifacts. The concurrent editing of the same files is prevented by
locking. The advantage of pessimistic coordination is that consistency of
the system is guaranteed and contradictory concurrent changes are
prevented. Pessimistic coordination is the most widely used form for a
closely cooperating team. However, there are cases when the overhead
for pessimistic coordination is too expensive because it needs
synchronous work of the developers and therefore a continuous
dialogue. Pessimistic coordination excludes:

• modification of the same artifact (file) at the same time
• cooperation over a long distance which makes closely coordinated

work impossible
• development steps that take more than a day before a consistent

state is reached (e.g., a large architectural reorganisation)
In these cases optimistic coordination has to be used. During optimistic
coordination each developer works on his personal copy of the source
code. From time to time, the copies can be merged into a new shared
version. Conflicts between changes have to be resolved during the merge



- 4 -

process. The advantage of optimistic coordination is that developers can
be decoupled almost completely for some time. The price for decoupling
is the need for merging and bigger integration steps. In the merging
phase, communication that has been postponed takes place in a more
concentrated manner.

Pessimistic Coordination with SNiFF+
SNiFF+ supports locking-based pessimistic coordination by seamlessly
integrating different version control systems (VCSs) with an adapter
architecture. SNiFF+'s project editor is a user interface to the common
functionality that the underlying VCSs offer.

The project editor, depicted in Figure 1, lets the user select sets of files
and check them in or out. Furthermore, the user obtains information
about the purpose and modification history of a file, and its actual
locking state. Differences between versions of a file can be browsed with
the DiffMerge tool.

      

Shared Workspace
of Team B

Shared Workspace
of Team A

x.h (shared)
x.C (shared)
x.o (shared)
y.h (shared)
y.C
y.o

Susan´s Private
Workspace

x.h
x.C
x.o
y.h (shared)
y.C
y.o

Tom´s Private
Workspace

optimistic
cooperation

Shared Integration
Workspace

Bill´s Private
Workspace

Julia´s Private
Workspace

Joe´s Private
Workspace

Bill´s Private
Workspace

Jane´s Private
Workspace

overlay

overlayoverlay

x.h
x.C
x.o
y.h
y.C
y.o

Shared Workspace

overlay

overlayoverlay

Figure 1. SNiFF+'s Project Editor Figure 2. Application of workspaces



- 5 -

Optimistic Coordination with SNiFF+
During optimistic cooperation two contrary requirements need to be
supported:

• decoupling the changes of a single team member from the other team
members, while

• sharing as much information as possible.
SNiFF+ supports these requirements by providing the concept of
overlaying workspaces. A workspace is the location in the file system
where a specific incarnation of a software system is located. Workspaces
of the same system can be organized into a hierarchy. Artifacts (files)
present in a lower level of the hierarchy hide (override) artifacts in
upper levels (see Figure 2). A hierarchy of workspaces makes it possible
to decouple the work of developers (or even teams of developers).

SNiFF+ distinguishes between private and shared workspaces. A
private workspace can be modified only by one team member, its
owner; all check-in and check-out operations and modifications are
applied to the private workspace. A shared workspace is read only for
all team members and contains the configuration the team is working
on. Files can only get to the shared workspace via a check-out operation
from the project repository. A shared workspace has one or more
administrators.

When a team member has finished a development task after
successfully building and testing it in his private workspace, it is
guaranteed that the private workspace and the shared workspace are
consistent. The changes can then be checked-in to the repository of the
shared workspace. After the next update of the shared workspace, the
changes will be seen and used by the other team members.

SNiFF+'s workspace mechanism results in a high degree of flexibility
for decoupling and sharing, because the scope of the decoupling and
time of synchronizing changes (updating the shared workspace) can be
fully controlled.

We at TakeFive, for example, are generally synchronizing and building
the shared workspace over night, so that on the next day, each team
member can work with the newest changes of all team members. This
allows for incremental evolution and avoids the need for big integration
steps and tests. The regular updates of the shared workspace are done
by cron scripts. During complex project reorganizations, the shared
workspace is kept at a stable stage for more than one day, until the
reorganization is carried out and tested in a private workspace.

It makes sense to have more than one shared workspace if more than
one team  is developing a system or using the evolving system as a
library for their work. Then one shared workspace would contain part or
all of the latest version of the system modified by the owner team while
the other shared workspace is seen also by the second team and would



- 6 -

contain less often updated more stable and mature versions of the
system.

In most of the cases when work done in a private workspace is
checked into a shared workspace this has no effect on the co-workers at
all. Conflicts can occur for two reasons:

• A file of the shared workspace was updated while it was checked out
into a private workspace. In this case SNiFF+ issues a warning. To
resolve this conflict a developer can merge the two versions with the
DiffMerge tool. In the Configuration Manager it is possible to get an
overview of all such conflicts.

• An update to a file in the shared workspace leads to a conflict with
dependent files in private workspaces. In this case the Configuration
Manager, depicted in Figure 3, can be used to investigate the nature
of the changes applied to the shared workspace. The Configuration
Manager shows the available configurations of a project, its structure,
and what specific file-versions are part of the configuration.
Differences between configurations on change set and file-level can
be shown and differing versions of files can be loaded into the
DiffMerge tool.

Policy Enforcement and Process Management
Process-centered software engineering tries to establish a
comprehensive theoretical basis for understanding, describing, and
enacting specific software processes [Mad91, Ost87].

The basic idea is to describe a specific software process with all the
activities and information flows it comprises. The resulting process
model is represented as a set of rules that define in which sequence
under which preconditions which documents may be modified with
which tools. With the same mechanism invariants for the usage of tools
are defined [Kai93]. A process model is enacted by executing it with a
process engine, which is the hub of every process-centered development
environment. The process engine controls the application of all tools.



- 7 -

Figure 3. SNiFF+'s Configuration Manager

SNiFF+ does not provide a process engine. Rather, SniffAccess, its
access interface, allows the implementation of policy enforcement and
therefore, its integration with a process engine. SniffAccess makes it
possible to externally drive and control SNiFF+ with two interaction
mechanisms:

• requests to SNiFF+
• notifications (or triggers) from SNiFF+
Requests specify actions like opening a project or loading a file into the
Editor. Notifications are sent to SniffAccess on events for which a trigger
was installed. Notifications have associated parameters supplying
further information on notification and can be of two types: pre-action
or post-action. On a notification SniffAccess can itself start an action
(either call another program or send a request to SNiFF+). Additionally,
on pre-action notification (pre-trigger) SniffAccess can either allow the
action in SNiFF+ to be completed or not, depending on the result
returned to SNiFF+. SniffAccess can be used via an API and via shell
commands.

3.2 Informal Cooperation with SNiFF+
SNiFF+ does not provide any specific support for informal cooperation.
Nonetheless it eases informal cooperation considerably, by speeding up
the process of reading and understanding source code with its browsing
facilities. These aspects were discussed in depth in [Bis94a] and will not
be covered any further in this paper.

3.3 Realization

Open Adapter Interface to Version Control Systems



- 8 -

SNiFF+ provides abstractions for most of the functionality of classical
VCS implementations. For these VCS functions SNiFF+ provides a
consistent and easy-to-understand user interface. For example, the
SNiFF+ check-in-out operations can be easily mapped to any VCS. The
interface consists of about 40 commands that have to be mapped to the
commands of a specific VCS. Mappings can be defined and customized in
the preferences dialog. Typically they consist of inline awk scripts but
they can be implemented with any kind of shell commands. Currently
adapters for ClearCase [Atr94], RCS [Tic85], and SCCS [Roc75] are
provided.

Configuration Management
Unfortunately CMSs are too different to be integrated with an adapter
interface. For this reason a CMS was implemented in SNiFF+, to provide
seamless integration with the programming environment. The
implementation uses the VCS adapter architecture and works with all
VCSs that support symbolic names for versions.

3.4 Related Work
The idea of isolating the work of developers based on workspaces and of
supporting the handling of conflicting changes with merge tools is not
new. It was for example implemented in SUN's NSE [NSE89]. SNiFF+
distinguishes itself from other such approaches by providing a seamless
integration of the workspace support into a programming environment.

Several available programming environments provide some kind of
integration with CMSs. This integration usually provides only the
possibility to call some commands of the CMS from a menu of the
programming environment (e.g., integration between ClearCase and
Softbench [Atr94]).

Most programming environments for large scale software
development do not provide an explicit project concept, as discussed in
[Bis94a]. By definition a CMS has a project model. If a programming
environment does not have an explicit project model it can not be tightly
integrated with a CMS because that requires the programming
environment to transparently control the project model of the CMS.

3.5 State and Further Proceeding
SNiFF+2 is currently in beta test and has been successfully deployed in
large software development projects. So far RCS, SCCS, and ClearCase
have been successfully integrated via SNiFF+2’s  open VCS interface and
other VCSs are soon to follow.

We intend to take two approaches to evolving SNiFF+, first by
improving the support it currently provides and second by studying the
commercial feasibility of the approach taken in the Beyond-Sniff project.
This second approach would result in splitting SNiFF+ into a set of
services and tools running on the Beyond-Sniff platform.



- 9 -

4 Cooperative Software Engineering with Beyond-Sniff
Considerable research for methods and tools supporting cooperation is
currently being carried out in the areas of process-centered software
engineering and CSCW. We believe that results from both areas should
be practically applied as soon as they are available. Unfortunately, the
support of informal cooperation on software development is neglected in
both software engineering and CSCW.

It is therefore important to do research in the area where CSCW and
CSE intersect. We have taken first steps in this direction in developing
Beyond-Sniff. This section describes the innovative aspects of Beyond-
Sniff that support cooperation. A more detailed discussion can be found
in [Bis94b].

4.1 Informal Cooperation with Beyond-Sniff

Motivation for Informal Cooperation
Cooperative software development requires a lot of communication
between developers. The increasing popularity of object technology
tends even to increase the communication needs. Due to closer
cooperation many small pieces of information have to be shared. This is
frequently neglected because the conventional approach of putting them
into documents with fixed structure does either not make sense or is too
expensive. The problem is typically most annoying for information that
can not be formalized, such as ideas, short term plans, or information
about classes and methods. This kind of information is difficult to store
in documents and it is even more difficult to keep it up to date and find
it once it is stored.

Developers are often interrupted by requests for some specific
information that cannot be provided by someone else. This kind of
interruption affects ones concentration and may be counter-productive.
Facilities for asynchronous communication may remove this source of
productivity-decreasing interruptions.

Developers working in the same building can reduce the information
deficit to a certain degree by informally keeping each other up-to-date.
This is not the case for teams separated by large distances. In this case
there exists either a constant information deficit or a huge
communication overhead, both of which reduce overall productivity.

Informal Cooperation with Annotations
We experienced this phenomenon first hand when Sniff was
commercialized and certain parts were finished in Zurich while work
was already going on in Salzburg. This was a strong motivation to
develop an annotation mechanism as part of the Beyond-Sniff platform.
This annotation mechanism makes it possible to connect structured
information with any kind of artifacts, be it fine-grained artifacts such
as classes and instance variables or coarse-grained artifacts such as
projects and files.



- 10 -

A Beyond-Sniff annotation has a type that defines which information
fields it comprises. This makes it possible to store different kinds of
structured information. Frequently used annotation types are, for
example, error, documentation, idea, and to-do annotations. Annotated
artifacts are visually marked in all Beyond-Sniff tools. One mouse click
suffices to display all annotations connected with an artifact. Annotation
types can be extended by inheritance and they are defined with a
graphical schema editor.

Annotations are centrally stored for every project per site. A
developer has either the possibility to access an annotation via artifacts,
or he can formulate an OQL [Cat94] query with a query tool to obtain all
annotations matching certain conditions. For example, it is possible to
obtain all idea or to do annotations that have been connected to a certain
project since a given date. Figure 4 shows the query tool with an
evaluated query. Figure 5 shows the screen after selection of a matching
annotation: The user sees that the class SymtabItem has annotations.
One of them is shown in a separate window.

Figure 4. AnnotationBrowser.

There are many situations in which a developer wants to be notified
automatically when an annotation is created. For these situations he can
define OQL trigger queries that are executed for every newly created or
modified annotation. Upon matches the developer is notified either with
the Beyond-Sniff notification tool or by e-mail. A typical trigger query
selects, for example, all error annotations of projects belonging to a
certain developer.



- 11 -

The central storage of annotations together with the query and trigger
query mechanisms makes it easy to share information. For instance,
there is no need to bother about who might be interested. This reduces
the communication overhead by decoupling developers the same way as
the Smalltalk change propagation mechanism decouples cooperating
objects [Gol89].

Annotations are conceptually a mechanism for undirected
communication. Sometimes it is useful to make sure that coworkers read
a particular annotation. Beyond-Sniff has two features for that purpose.
First, an annotation can be specifically addressed to developers. Second,
the creator can specify that he wants to be automatically notified
whenever an annotation is opened.

Figure 5. Annotation aware Editor and SymbolBrowser with an annotation.

Annotations can not only be inserted manually but may also be
generated and inserted by tools which make certain events visible in the
annotation universe. Typical of such cases are the check-in of a modified
file into the version control system and the modification of a project
structure.

Beyond-Sniff's annotations are a hybrid approach to information
management. On the one hand they can be used together with links to
organize information as a hypertext. On the other hand they are typed,
they are centrally stored and they can be retrieved with a query
mechanism. This integration of hypertext and database approach makes
it easy store structured information, to connect it with any kind of
artifact and to find it in different ways.



- 12 -

In this paper annotations and links were only discussed in the context
of cooperative software development but they can fulfill a large number
of information management and communication needs.

4.2 Policy-Driven Cooperation with Beyond-Sniff
Beyond-Sniff supports the conventional configuration management
approach, i.e., optimistic and pessimistic coordination, but it goes further
by supporting optimistic coordination over low bandwidths and by
providing extensive support for merging versions of entire projects. A
detailed discussion of the first topic goes beyond the scope of this paper.
The rest of this section gives a brief overview of Beyond-Sniff's merging
support.

Projects define the level of granularity on which developers are
cooperating with Beyond-Sniff. A project consists of all artifacts which
are relevant for the development of a certain software system. Projects
are explicitly defined and can be structured in a tree of subprojects.

Figure 6. TurboMixer visualizing differences in structure and classes

The merging of projects is a central task of any kind of optimistic
cooperation. Beyond-Sniff's TurboMixer provides support for comparing
and merging projects. Differences can be browsed at the project level
and on varying levels of symbolic and textual detail. It visualizes
differences with colors and pictograms.

Figure 6 shows the TurboMixer in comparing three consecutive
versions of a project, ordered by increasing age from left to right. The
structure of every working project is visualized as a tree and the classes
are listed above them. New, changed, and deleted elements are
visualized the same way in the tree and in the list. The semantics of the
pictograms and colors is described in the lower left corner.

4.3 Realization
Beyond-Sniff consists of cooperating tools running on various
workstations. The biggest challenge in implementing such a distributed
system is tool integration, i.e., the integration of different kinds of tools
and services in a way that they can cooperate as seamlessly as possible
(from the user's point of view).



- 13 -

Beyond-Sniff consists of a platform for tool integration and an
extensible number of services and tools. Figure 7 provides an
architecture overview that also shows a number of important services
and tools. It is beyond the scope of this paper to give a comprehensive
overview of the approaches taken in realizing this architecture. Further
information can be found in [Bis94b].

4.4 Related Work
In the area of CSCW there is a large number of published synchronous
approaches such as synchronous editing of documents and video
conferencing but there are no approaches that have achieved a relevant
level of practical application besides video conferencing systems. Dewan
proposes in [Dew93] applying different synchronous approaches such as
synchronous editing and debugging to cooperative software engineering.
This approach, however, does not address the relevant problems of
cooperative software engineering discussed in Section 2.

Some programming environments such as Cadillac [Gab90] and Field
[Rei90] already incorporate annotations. In contrast to our approach
their annotation concepts are simplistic means for connecting some
information with source code. They are tool-specific and cover only a
small part of the artifacts. Moreover, these environments are aimed at
single developers.

We do not know about tools similar to TurboMixer. Only Grass
describes in [Gra92] similar concepts and ideas.

FileMergerFileMerger FileMergerFileMerger FileMergerFileMerger FileMergerFileMerger

Applications

Service
Broker

DataDictionary &
ServiceDictionary

Services

Message Bus

FileMergerFileMergerFileMerger
Beyond-

ClassBrowserTurboMixerSniffAdministration
Tools

Annotation &
Link ServiceAnnotation &

Link ServiceAnnotation &
Link Service

SymbolTable
ServiceSymbolTable

ServiceSymbolTable
Service

ProjectManager
ServiceProjectManager

ServiceProjectManager
Service

Infrastructure
ServicesInfrastructure

ServicesInfrastructure
Services

Figure 7. Architecture overview.

4.5 State and Further Proceeding
We implemented the first Beyond-Sniff prototype in 1993 to validate
the feasibility of our approach. Based on this experience we rewrote
large parts of the infrastructure, which is now mature enough that
Beyond-Sniff is used on one host by multiple developers cooperatively.
It is used for its own evolution.

Work is going on in different areas. By working with Beyond-Sniff on
Beyond-Sniff we are currently evaluating how useful the support for
cooperative software engineering is in practice. This will probably



- 14 -

trigger several iterative refinement processes. The message bus will be
replaced to make it possible to use Beyond-Sniff cooperatively on
several hosts. The tools running on Beyond-Sniff will be evolved.

Implementation on the support for cooperation over low bandwidths
has not started yet. Its technical foundation, however, has been laid by
implementing GTS [Maf94], a transport layer independent, reliable
multicast system.3

5 Summary
Software systems are most often developed in teams. Teamwork implies
cooperation and therefore also coordination needs. We identified two
forms of coordination, policy-driven and informal coordination.
Conventional configuration management addresses the more obvious
need for policy-driven coordination. Pessimistic or optimistic approaches
can be distinguished. Informal coordination is neither addressed in
theory nor supported by tools in practice.

Based on the results of the Sniff project two follow-up projects were
started. For both of them it was a central goal to implement considerable
support for cooperative software engineering. In the commercial SNiFF+
project an evolutionary approach was taken which results in a seamless
support for configuration management and version control and therefore
for policy-driven coordination.

In the research-oriented Beyond-Sniff project a search for new
approaches is going on. The current results are the annotation
mechanism which makes it possible to connect structured information
with any kind of artifacts, be it fine-grained artifacts such as classes and
instance variables or coarse-grained artifacts such as projects and files.
This information can be retrieved flexibly via queries, triggers, and all
annotation-sensitive tools. The second result in the area of cooperative
software engineering is extensive support for structural, symbolic, and
textual comparing and merging of entire projects.

Our search for novel approaches to supporting cooperative software
engineering is not yet finished, but we made some important steps.

Acknowledgements
We would like to thank our colleagues at TakeFive and in the Beyond-
Sniff project at UBILAB for their involvement in the development of
SNiFF+ and Beyond-Sniff. Special thanks go to Thomas Kofler and Bruno
Schäffer who gave us a lot of comments on how to improve this paper.
Finally we would like to thank Union Bank of Switzerland for funding a
laboratory where research projects such as Beyond-Sniff can be carried
out.
                                    
3 GTS was developed in a cooperation between University of Zurich, UBS/UBILAB, and Siemens Munich.

The project was sponsored by the Swiss Federal Commission for the Advancement of Scientific Research
(KWF).



- 15 -

References
[Atr94] Atria Software, Inc.: ClearCase User’s Manual, 4000-011-A, May 1994
[Bis92] Bischofberger WR: Sniff - A Pragmatic Approach to a C++ Programming Environment. in

Proceedings of the USENIX C++ Conference, Portland, Oregon, Aug. 1992
[Bis94a] Bischofberger WR, Kofler T, Schäffer B: Object-Oriented Programming Environments:

Requirements and Approaches. in Software – Concepts and Tools , Vol. 15 No. 2, Springer-
Verlag, 1994

[Bis94b] Bischofberger WR, Kofler T, Mätzel K-U, Schäffer B: Computer Supported Cooperative Software
Engineering with Beyond-Sniff. UBILAB Technical Report 94.9.1, 1994

[Cat94] Cattell RGG (ed.): The Object Database Standard: ODMG-93; Morgan Kaufman Publishers, 1994
[Dew93] Dewan P, Riedl J: Toward Computer Supported Concurrent Software Engineering. IEEE

Computer, January 1993
[Gab90] Gabriel R. P. et al.: Foundation for a C++ Programming Environment. In Proceedings of C++ at

Work-90, Secaucus, New Jersey, 1990
[Gol89] Goldberg A, Robson D: Smalltalk-80–The Language; Addison-Wesley 1989
[Gra92] Grass JE: Cdiff: a Syntax Directed Differencer for C++ Programs. in Procs. of the USENIX C++

Conference, Portland, Oregon, Aug. 1992
[Kai93] Kaiser GE, Popovich SS, Ben-Shaul IZ: A Bi-Level Language for Software Process Modeling. in

Procs. of the 15th ICSE, 1993
[Mad91] Madhavji NH: The Process Cycle. in Software Engineering Journal, September 1991
[Maf94] Maffeis S, Bischofberger WR, Maetzel KU: GTS: A Generic Multicast Transport Service.

UBILAB Technical Report 94.6.1, 1994
[Mal94] MaloneTW, Crowston K: The Interdisciplinary Study of Coordination. in ACM Computing

Surveys, Vol. 26, No. 1, March 1994
[NSE89] The Network Software Environment. Sun Technical Report, Part No. 800-3295-10, Sun

Microsystems, 1989
[Ost87] Osterweil L: Software Processes are Software too. in Procs. of the 9th ICSE, 19987
[Rei90] Reiss SP: Interacting with the FIELD environment. Software – Practice and Experience, Vol. 20,

S1, 1990
[Roc75] Rochkind M: The Source Code Control System (SCCS). IEEE Transactions on Software

Engineering, Vol. 1, No. 4, 1975
[Sch93] Schefstöm D., van den Broek G.: Tool Integration–Environments and Frameworks; John Wiley &

Sons, 1993
[Tic85] Tichy W: RCS – A System for Version Control . Software – Practice and Experience, Vol. 15,

No.7, July 1985
[Tic88] Tichy W: Tools for Configuration Management. Proceedings of the International Workshop on

Software Version and Configuration Control (Jan. 27 - 29, 1988 Grassau), Teubner, 1988


