
Leveraging Corporate Software Development

Andreas Birrer, Thomas Eggenschwiler

UBILAB, Union Bank of Switzerland
Bahnhofstr. 45, CH-8021 Zurich

e-mail: {birrer, eggenschwiler}@ubilab.ubs.ch

Framework-based development approach – well known from the domain of
graphical user interfaces – should be utilized to meet a corporate’s increasing
demand for customized software. We present the technical aspects of the
approach and, based on a scenario of applying framework-based development
to the domain of financial instruments trading, we discuss some organizational
implications.

1 Introduction

Ever increasing demand for customized software to support specific business processes,
especially in the services industry, call for more leverage in the software development
process. The leverage must come from two sides. First, a useful approach must yield
shorter time-to-delivery and lower per-product-cost than currently employed approaches.
Second, the cost of maintaining (making extensions and adaptations) a software system is
to be reduced. In our view, framework-based software development is currently the most
promising approach in providing such leverage.

In most of today's software development projects much of the same functionality is
designed, implemented and debugged for every new application. This is true for structures
and functionality in the user interface, the data storage subsystems, the communication
facilities, etc. But, it is also true for structures and functionality that appear very closely
linked with the specific solution a certain application provides.

This generally observed lack of reuse-orientation has two reasons. First, the design scope
and the implementation scope is typically one project. The result of this setting is that there
is neither time nor incentive to redesign a working solution. The second reason is the lack of
a vehicle to capture concepts and software solutions such that they are attractive to reuse.

There exist different notions of what to call a framework. When we talk about
framework-based development, we mean the kind of frameworks that are supported by
object-technology [Joh88].

This paper is organized as follows. Section 2 presents the framework idea and the
technical aspects of framework-based software development. In section 3, we lead through
a scenario showing how a financial institution might tackle its software needs for supporting
financial instruments trading. Simply adopting the techniques and technical guidelines
associated with framework-based development will not make use of the full potential of the
approach. What is needed are radical changes in the way software development is
organized, managed and valued. This is the issue of Section 4. Section 5 summarizes the
cornerstones of framework-base development.

- 13 -

2 Technical Aspects of Frameworks

An object-oriented system is a society of objects. A designer distributes required
functionality among cooperating objects. If a task is sufficiently complex it is implemented
by several objects working together as a team. In such a system, each member has its
assigned role.

Objects collaborate by sending messages to one another. The set of messages that an
object understands is called its protocol. For example, a user interface object might ask a
password broker object whether the character sequence the user just typed in is a valid
password. The password broker object may not have enough data on its own to answer this
request, but it knows of a few password database objects. One of them will certainly have
an answer.

2.1 Frameworks

Every software system has functionality that is specific with respect to the problem it tries
to solve. However, looking at several applications at once we also find that they have some
functionality (or set of roles) in common. This recurring functionality is termed the generic
part of an application. The functionality needed to provide one particular solution is termed
the specific part of an application.

A framework implements a generic part and defines the places where extensions have to
be made in order to support specific solutions. Object technology provides constructs and
the techniques to support this separation of the generic and the specific part of an application
directly on the code level. The extensions can be quite small in comparison to the rest of the
code.

Now, returning to the password broker example above. Let us assume several
applications need password management but they have slightly different requirement on
how passwords are check. A framework might then supply a password broker object as
one element of its generic part. Other objects in the system whether they belong to the
generic or the specific part can rely on the existence of this password broker object. To
account for the differing requirements, the password broker object can be configured with a
security strategy object which encapsulates, among other things, how passwords are
checked. Such a security strategy object belongs to the specific part of an application. The
framework defines what messages such a security strategy object must understand.

In a rich framework much of the functionality to provide the required behavior of the
application to be built is already present. But at various places this generic functionality
depends on functionality which can only be implemented with respect to one specific
application. The protocols (set of messages) required of objects of the specific part insulate
the specific part of the system from the framework and make the latter independent of the
specific objects. Figure 1 illustrates this schematically and compares framework-based with
“function library based” development.

To summarize, the flexibility and genericness of a framework stems from only relying
on what is done (and where), and abstracting from how it is done. Object technology allows
to carry this decomposition of responsibility much further than previous technologies.

- 14 -

Figure 1. Framework-based vs. function library based development.

2.2 Patterns

A rich and powerful framework may become quite complex and it is difficult for a non-
expert application developer to grasp the “big picture”. This may result in a serious entry
barrier. Fortunately, the object-oriented community is increasingly aware of certain
recurring designs that lead the developer to recognize and apply common solutions to the
problems they try to solve. These designs are term patterns [Gam93, Cop94]. To the
developer who is aware of these patterns they work like filters through which the
complexity of a framework is greatly reduced.

2.3 The Scope of a Framework

Prominent frameworks are mostly associated with the domain of graphical user interfaces
[Wil90,Wei89]. But examples in other domains exist as well (e.g., operating systems
[Cam91], distributed applications [Sch94]).

To provide maximum support in application development the scope of a framework
should be confined to a rather narrow domain. That is to say, a framework should mainly
support a certain breed of applications. Such a selection of applications is sometimes called
a product family. In the following section we develop a scenario which accounts for the
need to focus on a product family when developing a framework.

3 A Scenario of Framework-based Software Development

In the following scenario we look at a financial institution starting to offer financial
instruments over-the-counter. For sake of brevity, call it a bank. To support its business this
bank, among other things, needs adequate software. It decides to develop this software itself
using object technology, and thereby build up the necessary know-how in-house.

In designing the software, one of the biggest problems faced with is that the evolution of
the business and the range and depth of trading activities of the bank can hardly be foreseen.
Emerging new opportunities can have drastic impact on the breadth of the services offered.
The software system must keep up with new activities of the trading teams and support new
services. There is no way to perform an exhaustive analysis and come up with one optimal
system. Also putting to work a certain solution will almost certainly trigger new
requirements.

3.1 Implementing a First System

The bank first wants to offer FRAs and interest rate swaps tailored to the needs of its
customers. For this it needs software for pricing individual FRAs and swaps, and access to
real-time market data. A back-office application supports deal execution and payment

- 15 -

settlements of active contracts. To perform risk management traders and senior
management need profit/loss figures and exposure indication (interest rates, counter parties).
A common data base integrates the different applications.

3.2 Extending Trading Activities

After some time, an other trading group is assigned to trading in options. This will also
include products like caps, floors, and swaptions.

The system requirements for the options trading team are much the same as for the
FRA/swaps team. The main difference lay in the pricing software and the risk management
software. In addition, the data model has to be extended.

Instead of building a new system from scratch, the development team decides to follow a
reuse-oriented approach and looks at the software for swaps and FRA pricing to find ways
of extending it. Equipped with the knowledge of how swaps pricing software works and the
new pricing requirements the developers build a pilot application for the pricing in the
option domain. During this development it becomes clear that both applications will have
much in common despite the fact that the pricing models used are quite different. In the
quest of an elegant solution and with maintenance in mind the developers take a step back
and rework their design of the option pricing software. The more generic algorithms and
attributes thus found promise to work well in the context of the instruments that must be
supported so far. After implementing the option pricing software the developers decide to
reengineer the swaps pricing software based on the new insight and the generic software
components.

3.3 Including Portfolio Management Services

When business activities are extended by including portfolio management as a customer
service, it is recognized that it would take a system similar to the one in the trading
department to support the new services. Since the bank is aiming at a corporate software
base the best move is to assign as many of the trading system developers as possible to the
task of building a portfolio management system.

The framework that exists so far provides leverage in building pricing and risk
management in trading software. So this framework is taken as a starting point to
implement portfolio valuation and various models for portfolio performance. During design
and prototyping of the portfolio management system the developers recognize various new
ways of implementing instrument definition and valuation, and refine the framework to
incorporate these insights.

To further support development, a corporate software base must provide software
components that cover inter-application communication, integration of real-time market
information, and transparent access to data in various databases, even if data models evolve
over time. Such support is increasingly supplied by commercial products and need not be
developed and maintained in-house. What is needed, however, are vendor independent
interfaces to such components. These have to be developed in-house.

The know-how gained in past development must be secured. Considerable know-how
recovery was already performed during redesign of the valuation and risk management
framework. But that framework will need extensions in order to stay alive. Additional
corporate wide software support such as vendor independent interfaces need to be included
as well. The bank’s choice is to assign the task of maintaining this corporate software base
to a framework group. This group includes some of the developers of the trading

- 16 -

department software. Given the implementation leverage that the framework group provides
then small teams can be assigned quite formidable development tasks. As part of
maintenance, older applications are reengineered to the extent that they comply with the
standards defined by the framework.

3.4 Offering a Range of Highly Customized Financial Products

While the spreads (and hence profit) in trading relatively simple instruments is continuously
shrinking the business of providing custom-tailored financial instruments gains on appeal.

The valuation of a wide range of tailor-made financial instruments requires that the
calculations and the logic in supporting software provides appropriate flexibility. This
flexibility is only achieved if valuation is based on building blocks rather than entire
instruments [Smi87, Err94].

When the developers look at ways to support customization they soon recognize that
much of the required flexibility is already available in the framework. The generic software
structures that until now served implementation must only be made explicit.

Finding further building blocks and ways of composition is as much an evolutionary
process as the refinement of the framework to incorporate option valuation and portfolio
management support. In a number of successive developments the underlying concepts of
the valuation of instruments are identified and modeled in software. Once made available by
the framework in software form they can be reused in other developments while the search
for other concepts and more powerful building blocks continues. As one such development,
the portfolio management software can be extended to include valuation of more complex
instruments thus giving the portfolio manager a broader choice in strategies.

4 Framework-based Development Organization

When a corporate adopts framework-based development it must deal with a number of
challenges:

• New requirements and design solutions must find their way to the framework
developers.

• Frameworks undergo consolidation and redesign periodically. The changes must flow
back into applications that are still being maintained and extended.

• Generally, programmers new to the framework must be informed about and sensitized
to the abstractions and patterns available in the framework. This is extremely important
since otherwise they will reinvent solutions, and the benefits of reuse are lost.

These are not really technical challenges. Rather they must be dealt with organizationally. In
the following, we outline an organizational structure that addresses the special characteristics
of framework-based software development.

4.1 Separation of Framework and Application Development

When developing applications based on a corporate framework then software projects
should be organized around a central group which is concerned with the development and
the maintenance of this framework. We call this central group the framework maintenance
group (FMG). The FMG is a sort of competence center for framework and concept
development.

- 17 -

Why this separation? The answer is one of application scope. While a good developer
may discover and apply powerful abstractions during application development these
abstractions server primarily the implementation of the required functionality. They don’t
automatically fit the requirements of other projects because the separation of generic and
specific functionality is with respect to one set of requirements. Only with respect to the
requirements of several application can anyone decide what to consider generic and what to
consider specific. So, what it takes is a periodic redesign of already working software
through refactoring. A mature framework has undergone several design iterations and thus
aggregates the know-how gained from several application developments.

The pressures from release plans and the resulting short term view discourage an
application developer from reworking the design. Thus refactoring does not happen
spontaneously and must therefore be institutionalized.

4.2 The Framework Maintenance Group

The main function of the FMG is to look at software solutions for a class of problems from
application development and try to come up with a generic solution. So the major input to
the work of the FMG are the design solutions arrived at in past projects. The FMG is
staffed with developers who have the necessary skills and motivation to grasp generally
useful abstractions and evolve them through successive redesigns into generic solutions.

Another important function of the FMG is to relief the application implementor from
system dependencies. The application implementor is offered hardware and software
system independent interfaces to system resources (operating system, window system,
communication, data bases, etc.). Members of the FMG specialize in state-of-the-art
abstractions to system resources. The result of centralizing this function with the FMG is
the development of an in-house standard for accessing system resources.

Proj 4
Proj 5 Proj n

Proj 3 Proj 1Proj 2

Framework Maintenance
Group

Subproject

Project

Subproject

SubprojectSubproject

Project / Framework Separation Traditional Application Development

Figure 2. Comparing Development Organizations

4.3 The Effect on Project Team Size

In traditional development without reuse-orientation, the range of functionality to be
implemented of even a medium sized application requires that development is split up in
several subprojects. Since the entire infrastructure and the architecture of the application
needs to be engineered there is considerable communication necessary to synchronize the
development efforts. This is shown schematically in figure 2 on the right.

When development is based on a suitable framework then most of the infrastructure and
the overall architecture is reused. The developers can concentrate on the implementation of

- 18 -

the specific functionality. We can therefore assign a much smaller number of developers to
a project. Few project would require more than three developers.

4.4 The Role of the Mediators

The separation of the developers in the FMG and the application developers introduces a
new problem. As mentioned above, the FMG must be kept informed about the problems
that application developers are confronted with. Application developers find new solutions
when designing the specific part of an applications. These solutions are very valuable to the
whole software process and must flow to the FMG for integration in the framework.
Changes and extensions to the framework must propagate to those using the framework.

One way to attack this problem is by job rotation. After having completed a project an
application developer spends a few months in the FMG and then moves on to an new
project. These mobile developers effectively act as mediators between the FMG and
application teams. The personal relations established during job rotation promotes know-
how exchange long after.

Not every developer is suited to take on the role of a mediator. Thus application design
reviews with one or more FMG developer participating supplement the role of mediators in
know-how transfer.

A very important aspect of mediators is the promotion of a framework culture. This is
the collective understanding that reuse of existing solutions and suggestions for
improvements of the framework are vital for successful development of the corporate
software base.

5 Conclusions

Software development today is characterized by applications that require a wide range of
functionality (graphical user interface, calculations, database access, inter-application com-
munication, etc.). The business activities which these applications support keep changing as
market places evolve.

A mature framework provides considerable leverage for corporate software development
through major reductions in:

• development time
• team size
• development risk
• maintenance cost and time

Frameworks are repositories of both concepts and real software solutions. This property of
frameworks helps to secure the often large investments into new designs and the acquisition
of implementation know-how. The very process of framework development transforms the
implicit know-how accumulated in the developers during problem solving into something
explicit and reusable. This know-how is thus protected from loss due to employee
fluctuations.

Frameworks are generally difficult to develop. It takes experienced architects with a
passion for reusable software structures. The wider the domain to be supported the more the
requirements of different application will diverge and the more difficult it becomes to find
abstractions that work well for all applications. A good and reusable distribution of
responsibility is typically not evident at the outset of development and requires a creative

- 19 -

process with successive redesigns. The software development organization must institu-
tionalize consolidation of design across projects and foster a reuse culture by rewarding
reuse.

We recognize that the approach presented in this paper is not complete. We have not
talked about how people and teams influence the successes or failures in software
development. The whole question of why one project is a success while another project
having access to the same technology fails to yield any results would be outside the scope of
this paper. However, a wealth of insight on this topic can be found in [DeM87].

6 References

[Cam91] Campbell R H, Islam N, Johnson R E, Kougiouris P, Madany P: Choices,
Frameworks and Refinement. In Proceedings of the International Workshop on
Object Orientation in Operating Systems (Palo Alto, CA, October 17-18),
IEEE Computer Society Press, Los Alamitos, CA, October, 1991

[Cop94] Coplien J O: Software Design – The Emerging Patterns. In C++ Report,
Vol 6/No 6, July-August 1994

[DeM87] DeMarco T, Lister T: Peopleware – Productive Projects and Teams. Dorset
House Publishing Co, New York, 1987

[Err94] Errington C, Financial Engineering – A handbook for managing the risk-
reward relationship. MacMillan Publishers Ltd, London, 1993

[Ferr89] Ferrel P J, Meyer R F: Vamp – The Aldus Application Framework. In
Conference Proceedings of OOPSLA’89, October 1-6, 1989

[Gam93] Gamma E, Helm R, Johnson R E, Vlissides J: Design Patterns: Abstraction
and Reuse of Object-Oriented Designs. In Proceedings of ECOOP’93,
Springer-Verlag, 1993

[Joh88] Johnson R E, Foote B: Designing Reusable Classes. In The Journal Of Object-
Oriented Programming, Vol 1, No 2, 1988, pp. 22-35

[Joh93] Johnson R, Palaniappan M: MetaFlex – A Flexible Metaclass Generator. In
Proceedings of ECOOP’93, Springer-Verlag, 1993

[Sch94] Schmidt D C: ASX – An Object-Oriented Framework for developing
distributed applications. In Proceedings of the 6th USENIX C++ Technical
Conference, Cambridge, MA, USENIX, April 1994

[Smi87] Smithson C W: A LEGO Approach to Financial Engineering: An Introduction
to Forwards, Futures, Swaps and Options. In Midland Corporate Financial
Journal, Winter 1987, pp. 64-86

[Wei89] Weinand A, Gamma E, Marty R: Design and Implementation of ET++, a
Seamless Object–Oriented Application Framework. In Structured
Programming, Vol 10, No 2, 1989, pp. 63-87

[Wil90] Wilson D A, Rosenstein L S, Shafer D: Programming with MacApp. Addison-
Wesley, Reading, MA, 1990

