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1. CONTEXT

The CAVE project (CAller VEri�cation in Banking and
Telecommunications) was a 2 year project supported by
the Language Engineering Sector of the Telematics Appli-
cations Programme of the European Union, and for the
Swiss partners, by the O�ce F�ed�eral de l'Education et de
la Science (Bundesamt f�ur Bildung und Wissenschaft). The
partners were Dutch PTT Telecom, KUN, KTH, ENST,
UBILAB, IDIAP, VOCALIS, TELIA and SWISSCOM. The
CAVE project terminated on November 30th, 1997.

The technical objectives of the CAVE project were to de-
sign, implement and assess 2 telephone-based systems which
use speaker veri�cation technology. Work Package 4 (WP4)
of this project has been focusing on the research and devel-
opment aspects. This paper describes the technology used
and the results achieved by WP4.

2. THE CAVE-WP4 GENERIC SPEAKER
VERIFICATION SYSTEM

Initially, the partners devoted some e�ort to building and
validating a common software platform for speaker veri�-
cation. The CAVE-WP4 Generic Speaker Veri�cation soft-
ware package is based on HTK (Hidden Markov Modelling
Toolkit), version 2.x [1]. The complete description of the
CAVE-WP4 Generic SV System is given in a companion
paper [2].

3. VERIFICATION ALGORITHM

3.1. General approach

The systems on which we report in this paper are �xed-
vocabulary text-dependent speaker veri�cation systems.
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The vocabulary is composed of the 10 digits. The al-
gorithmic approach is based on Hidden Markov Models,
associated with a likelihood normalisation approach. We
present in this section the main features that characterize
the CAVE-WP4 con�guration.

3.2. Speaker models

In the case of text-dependent speaker veri�cation, the text
of the utterance is known by the SV system as it goes to-
gether with the claimed identity. Therefore, the likelihood
of the utterance for a given claimed speaker is computed
as the likelihood of the speech segment for the sequence of
word models or subword models of the claimed speaker that
compose the expected linguistic content of the utterance. In
other words, the speaker model of a speaker X yields, for
a given speech utterance S, and an expected linguistic con-
tent W , a likelihood value L (SjX;W ). In the rest of this
paper, we will drop the dependence on W and refer to the
client likelihood function as L (SjX).

3.3. Likelihood normalisation

It was often observed that the acceptance/rejection deci-
sion, when based only on the likelihood value of the client
model, is relatively unreliable. It is both theoretically and
experimentally more e�cient to base the decision on a nor-
malised likelihood, also called likelihood ratio. In fact, this
result is a direct consequence of Bayesian decision theory.
With P (SjX) denoting the probability that the observa-
tions in S have been produced by the claimed speaker (X),
and P ( �XjS) the probability that they have been produced
by an impostor ( �X), the Bayesian decision rule writes :

P (SjX)

P (Sj �X)

accept

>

<

reject

R (1)

In practice, the probability P (SjX) is approximated by the
client-model likelihood L (SjX) but there are several ways
for estimating the term P (Sj �X), the most classical two be-
ing the use of a cohort model [3] or the use of a world-model.
Under the world-model approach, which we adopted in the
CAVE experiments, a single model is trained from a pool
of speech utterances produced by various speakers (usually



non-client speakers). If we denote as 
 the set of these
speakers, the world-model approach consists of the approx-
imation P (Sj �X) � L (Sj
). Whereas the literature does
not show a systematic advantage on one approach over the
other in terms of performance, the world-model has many
attractive properties :

- a world-model is much less time-consuming in terms
of computation : only one likelihood value has to be
computed for the non-speaker model likelihood.

- a world-model is much more economical in storage vol-
ume than a client-dependent cohort model.

- a world-model does not require a selection of cohort
speakers. This is all the more desirable as there is no
well-established procedure for doing so.

3.4. Enrollment

In the context of �xed-vocabulary Speaker Veri�cation, the
training procedure consists of learning the parameters of a
model for each speaker and each word of the vocabulary (in
our case, the 10 digits). In practice, the clients are asked
to pronounce several sequences of digits.

3.4.1. Initialisation

Even though embedded training theoretically allows the
training of word models from sequences of words without
requiring a segmentation of the training material, this very
procedure can not be applied safely in the case of small
amounts of training material, as is the case for a realistic
SV application. Therefore we used an automatic speech
recognition system in forced alignment mode, in order to
segment the enrollment material into words and non-speech
portions. This alignment was produced at KUN with the
PHICOS system, obtained from PHILIPS Research under
the LRE project MAIS. In a real application, this align-
ment stage can easily be implemented by a dedicated speech
recognition system, even if this system is relatively basic.

3.4.2. Modi�ed-EM training

In the case of limited training data, some of the covariance
matrices of the Gaussian distributions within the HMM
states may be di�cult to train with robustness (even when
diagonal). In fact, in the case of very few data, the variance
of the mixtures may become so small that the model over-
�ts the training data and can not generalise to new data.
As a consequence, the conventional EM training algorithm
can not be applied as such.

In our case, we put some constraints on the Gaussian densi-
ties so that they have a minimum variance. Moreover, this
minimum is scaled to the range of variation for each coe�-
cient. In practice, if we denote as s2k the overall variance of
the kth coe�cient, the adaptive variance ooring proceeds
as follows :

if �2ijk <  s2k then �2ijk :=  s2k (2)

where  corresponds to the variance ooring factor. In
other words, if the variance of a particular coe�cient in a
given state becomes, during enrollment, 1/ times smaller
than the overall variance of that coe�cient, over�tting is
suspected and the variance is not allowed to decrease any
further. Adaptive variance ooring is experimentally much

more e�cient than �xed ooring. A patent based on and
generalizing this idea is currently under review.

3.4.3. Handling of untrainable models

Even on segmented training material, we observed occa-
sional di�culties in training some word models for some
speakers. For instance, when there were more mixtures than
enrollment speech frames for a given word model. The ap-
proach which we adopted, is to replace the untrainable word
model by the model of the same word in the world-model.
This very simple approach is viable, provided a very limited
number of words are untrainable.

3.5. Access

As opposed to the enrollment phase, the veri�cation process
does not require any segmentation, nor even an initial step
of speech/non-speech detection.

3.5.1. Forced alignment

As the linguistic content of the (expected) veri�cation utter-
ance is known, the likelihood value of the test speech mate-
rial is computed with a deterministic syntax, corresponding
to the expected sequence of words (forced alignment mode).

3.5.2. Speech/non-speech detection

Silence portions or, more generally, non-speech portions,
can be present between words and are not predictable.
They are dealt with by an optional silence model which
is inserted between successive words before the best path
is searched for, during the computation of the utterance
likelihood. This non-speech model is naturally speaker-
independent and it is trained with signal portions labeled
as non-speech, in the enrollment material.

By using the same non-speech model for both the client
scoring and the world scoring, it can be expected that a
vast majority of the non-speech frames will be assigned to
the same states in both decoding processes, and will there-
fore have the exact same likelihood value. If so, these terms
cancel out in the likelihood ratio (LR) and have no contri-
bution to the decision. This is illustrated in equation (3),
where the symbol # denotes non-speech.

LR =
L (#� s1 �#� s2 � : : : � sp �# j X)

L (#� s1 �#� s2 � : : : � sp �# j 
)

=
L (#jX)L (s1jX) : : : L (spjX)L (#jX)

L (#j
)L (s1j
) : : : L (spj
)L (#j
)

�
L (s1jX) : : : L (spjX)

L (s1j
) : : : L (spj
)

=
L (s1 � s2 � : : : � sp j X)

L (s1 � s2 � : : : � sp j 
)
(3)

Equality would hold if paths in the non-speech portions
were perfectly identical for both decodings with the speaker
and the world models, which would happen with forced bor-
ders for non-speech portions, but this would require an ex-
plicit speech/non-speech detection. The approximated ap-
proach is much simpler to implement and a few experiments
showed no signi�cant di�erences between both.

It is a similar principle that justi�es the substitution of a
particular word model by the model of this word in the



world-model : if, the untrained word for speaker X is mod-
eled by the world-model instead of a speaker-dependent
model, the likelihood ratio simpli�es for this word (under
the assumption of perfect synchrony) during the decoding
process.

3.5.3. Likelihood time-normalisation

In practice, the likelihood terms L (SjX) and L (Sj
) are
evaluated as the product of frame-based terms (each of them
corresponding to the product of an emission probability and
a transition probability). Therefore, the logarithm of the
likelihood ratio LR can be written as the sum of T frame-
based log likelihood ratios, corresponding to each of the T
observations in the speech utterance S. Some authors �nd
it appropriate to normalise the LR by dividing it by the
utterance length. In our experiments, we found a very little
but slightly negative impact of this normalisation. There-
fore we carried out most of our experiments with the non-
normalised likelihood ratio.

3.6. Scoring Procedure

Together with the CAVE generic system, a basic set of
scoring procedures was developed in order to standardise
performance evaluation across the partners. In the ex-
periments reported here, we measure the performance in
terms of Gender-Balanced Sex-Independent Equal Error
Rate (GBSI-EER), following EAGLES recommendations
[4]. The GBSI-EER is obtained in the following way :

a) for each registered speaker Xi (male or female), a
threshold value �i is computed (a posteriori) so as to
equalise the False Rejection Rate and the False Ac-
ceptance Rate, taking into account male and female
impostors with an equal contribution,

b) the corresponding EER (Ei) for speaker Xi is then
computed,

c) all Ei are averaged across male clients to generate EM ,
across female clients to generate EF , and then these 2
separate scores are themselves averaged : E = (EM +
EF )=2.

This score corrects possible unbalance between the number
of female and male speakers in the tested population. It
assumes that impostors do not know the sex of the genuine
client in advance.

All results reported in this paper correspond to the GBSI-
EER, i.e. with speaker-dependent a posteriori threshold
setting. However, other experiments were carried out in
the CAVE project with a priori threshold setting. Details
are given in a companion paper [5].

4. EXPERIMENTAL PROTOCOL

4.1. The SESP database

SESP is a database collected by KPN Research. It contains
telephone utterances of 24 male and 24 female speakers call-
ing with di�erent handsets (including some calls from mo-
bile phones) from a wide variety of places (such as restau-
rants, public phones and airport departure lounges). All
the recordings were made between March and May 1994. A
substantial proportion of the calls was placed from foreign
countries. In our experiments, the 21 male and 20 female

speakers for whom there is su�cient speech material, are
used as clients.

The speech material under focus in this paper is composed
of "Scope" (telephone calling-card) numbers, namely se-
quences of 14 digits uttered in a more or less continuous
fashion, some corresponding to the speaker's scope num-
ber, some others to other clients'. Each session contains 2
utterances of the speakers own's number. For each speaker,
speech recorded in 4 distinct sessions was selected as enrol-
ment material. The other sessions were considered as test
sessions. No obvious factor makes the SESP data signi�-
cantly di�erent from those that could be expected from a
�eld test data collection, except for the lack of intentional
impostor attempts.

4.2. Acoustic analysis

In the course of the project, we tested several sets of acoustic
features. In all the experiments we used a pre-emphasis of
0.97, a frame size of 25.6 ms, a frame shift of 10 ms and a
Hamming windowing.

4.2.1. FFT-derived cepstrum coe�cients

The �rst step for the calculation of these coe�cients is
the computation of the magnitude of the Fourier Trans-
form. Then, we use a set 20 of triangular �lters on the full
frequency range between 0 and 4000 Hz, following a Mel
scale (MFCC coe�cients). The cepstrum coe�cients are
obtained as the coe�cients between rank 1 and m of the
cosine transform of the log-energy computed in each �lter.
The logarithm of the frame energy is added to the feature
vector.

4.2.2. LPC-derived cepstrum coe�cients

The LPC Cepstrum coe�cients are obtained from a (16th
order) linear prediction analysis (using the auto-correlation
method). The LPCC coe�cients correspond to a 0-4000
Hz bandwidth and a linear frequency scale. Here also, a
log-energy coe�cient is added to the feature vector.

4.2.3. Additional processings

We apply long-term cepstral mean substraction (estimated
separately on each utterance). We extend the feature vector
with delta coe�cients computed from 5 successive cepstral
coe�cients and with delta-deltas computed from 5 succes-
sive deltas.

4.2.4. Size of the feature vector

In summary, a frame is represented by a vector of m Cep-
strum Coe�cients (MFCC or LPCC) plus a log-energy co-
e�cient, and (an approximation of) their �rst and second
derivatives, namely a vector of 3�(m+1) coe�cients. Typ-
ical values of m are between 12 and 16.

4.3. Experimental protocol

4.3.1. World-model

For estimating the parameters of the world-model for the
SESP experiments, we used a small subset of the Dutch
Polyphone database, corresponding to 24 male and 24 fe-
male speakers, and consisting of 6 sequences of digits, the
length of which ranges from 4 to 16. All speakers are dis-
tinct from SESP speakers. In our experiments, the world-
model has the same topology as the client models.



4.3.2. HMM topology

In this paper, we report the results obtained with HMM-
LR topologies (p states per phonemes � q Gaussian densi-
ties per state), since they yielded the best results for text-
dependent veri�cation. All covariance matrices are diago-
nal.

4.3.3. Test con�guration

Tests were carried out on a single utterance of the card
number. Each trial consisted of 1658 genuine accesses and
1016 impostor attempts (75 % same-sex, 25 % cross-sex).

5. RESULTS

We studied the inuence of the HMM topology in terms of
number of states per phoneme and number of (diagonal)
mixtures per state. We also investigated the impact of the
acoustic analysis, the inuence of the ooring factor and
the e�ect of the number of enrolment sessions.

5.1. Impact of the HMM topology

In a series of experiments, we compare the impact of the
HMM topology, characterised by p and q for an enrollment
in 4 sessions. We use the adaptive variance ooring tech-
nique, with a ooring factor equal to 1.0. Figure 1 de-
picts the GBSI-EER as a function of the product pq, with
LPCC coe�cients. Figure 2 gives corresponding results
with MFCC coe�cients. With both parameterisations, it
can be seen that the product pq is the main factor that
governs the performance level, as noted in [3].

5.2. Impact of the type of acoustic analysis

The comparison of Figure 1 and Figure 2 shows that, while
LPCC coe�cients outperform MFCC coe�cients for simple
HMM topologies (pq � 2), this advantage disappears with
more elaborate models, namely those for which pq � 2.

Figure 3 compares, for the 2 � 3 and 3 � 2 topologies, the
level of performance with 12 and 16 LPC-16 cepstrum co-
e�cients, for several enrollment con�gurations. The speech
parameterisation based on 16 LPC-16 coe�cients shows a
slight advantage over 12 LPC-16 cepstrum coe�cients.

5.3. Impact of the ooring factor

On Figure 4, we have depicted two series of results obtained
with 2 enrollment sessions only : the �rst series corresponds
to a �xed variance oor (of 0.005) on the individual variance
of each coe�cient (standard HTK setting) whereas the sec-
ond series corresponds to an adaptive variance oor of 1.0
(found to be optimal on most SESP experiments). A typi-
cal situation of over�tting is observed with a �xed variance
oor : when the number of Gaussian mixtures per states in-
creases, the overall performance decreases, indicating that
some mixtures are getting over-specialised on the enroll-
ment data. With adaptive ooring, the picture is inverse.
Increasing the number of parameters in the HMM-LR has
a bene�cial e�ect : the error rate decreases with the HMM
complexity and reaches smoothly an asymptot, at a level of
performance which is 5 to 10 times better than with �xed
ooring.

5.4. Impact of the number of enrollment session

We report here performance obtained with 4, 3, 2 and 1 en-
rollment sessions, with the experimental con�guration that
usually performed well in our experiments : a 2-state, 3-
mixture Left-Right HMM with diagonal covariance matri-
ces, with 12 LPC-16 cepstrum coe�cients (+ log energy +
�s + ��s) and a variance ooring factor of 1.0. The 1-
session condition is a very critical con�guration for at least
two reasons : long-term speaker variability is not repre-
sented in the enrollment data and the volume of enrollment
material is very limited (here, two utterances).

Table 1 gives the performance obtained for that particular
experiment. The error rate with one enrollment session is
about multiplied by almost 2.5 as opposed to two enrollment
sessions. Even though the error rate can still be considered
reasonably low, the degradation observed shows how im-
portant it is, if feasible, to collect enrollment material in 2
sessions.

4 enrollment sessions 0.30 %
3 enrollment sessions 0.50 %
2 enrollment sessions 0.61 %
1 enrollment session 1.45 %

Table 1. Performance obtained on SESP using 1 to
4 enrollment sessions. 12 LPC-16 cepstrum coef-
�cients + energy in dB, and their �rst and second
derivative. HMM-LR 2:3 (diag). Adaptive variance
ooring factor = 1.0. Scores are GBSI-EERs in %

5.5. Conclusions and perspectives

The low error rates reached on the SESP database are un-
doubtebly more than competitive as compared to the state-
of-the-art performance reported on telephone data in the
literature. Even though SESP has not been calibrated yet
in other laboratories, EERs of 0.3 % with 4 enrollment ses-
sions and of 0.6 % with 2 enrollment sessions are certainly
challenging values for further research.

Many tracks remain to be explored. In particular, the ad-
justment of the topology of the world-model, the design of
new techniques for HMM enrollment with scarce data, the
use of some techniques of frame selection for robust likeli-
hood ratio evaluation, the implementation of incremental
enrollment, etc... Most of these issues will be addressed in
the context of the Telematics-LE PICASSO project, start-
ing in January 1998.
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Figure 1. SESP : inuence of the HMM topology
on the Equal Error Rate. Acoustic features are 12
LPC-16 Cepstrum coe�cients + log energy + �s +
��s. GBSI-EER in % (in log scale) as a function of pq.
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Figure 2. SESP : inuence of the HMM topology
on the Equal Error Rate. Acoustic features are 12
MFCC coe�cients + log energy + �s + ��s. GBSI-
EER in % (in log scale) as a function of pq.
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Figure 3. SESP : inuence of the number of LPC-
16 Cepstrum coe�cients on the Equal Error Rate.
Acoustic features are 12 or 16 LPC-16 Cepstrum
coe�cients + log energy + �s + ��s. GBSI-EER in
% (in log scale) as a function of the number of enrollment
sessions.
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Figure 4. SESP : inuence of the adaptive vs �xed
variance ooring approach. Acoustic features are
12 LPC-16 Cepstrum coe�cients + log energy +
�s + ��s. GBSI-EER in % (in log scale) as a function
of the HMM topology for �xed ooring (�x) and adaptive
ooring (adp).


