
Appeared in Communications of the ACM 40, 10 (October 1997). Page 52-59.

Framework Development for Large Systems

Dirk Bäumer 1, Guido Gryczan2, Rolf Knoll 3, Carola Lilienthal 2, Dirk Riehle4, and Heinz Züllighoven2

Abstract
Frameworks are a key asset in large-scale object-oriented software development. They promise increased
productivity, shorter development times, and higher quality of applications. To fulfill this, frameworks
should be designed in such a way that they can evolve, be easily reused, adapted and configured. Drawing
on experience with large-scale industrial banking projects, we present concepts and techniques for domain
partitioning, framework layering, and framework construction. In particular, we discuss how domain
aspects relate to framework structure, how frameworks are layered to accommodate domain needs, and
how the resulting framework layers are integrated without tight coupling.

1 Introduction
These days, many businesses such as hospitals, banks and insurance companies tailor their services to the individual
customer. Customer needs become the center of attention, the service being adapted to meet their needs. The more
specific the service required, the more specialized the software solutions have to be. To achieve such flexibility,
computer support is indispensable.

For some years, we have been designing and implementing such software solutions for various application domains.
Using object-oriented technology, frameworks now largely support the development of new applications. However,
frameworks alone don’t solve all the problems. The construction and use of frameworks is so highly complex that
software developers are confronted with almost insurmountable difficulties (see [4]). In this paper, we describe the
problems encountered, and the concepts and techniques used to overcome them.

The work reported here is based on a series of object-oriented software projects that were conducted at the RWG5 (cf.
[2, 3]), a company providing software and computing services to a heterogeneous group of approx. 450 banks in
Southern Germany. The projects have produced a family of applications covering almost the whole area of banking -
tellers, loans, stocks and investment departments as well as self-service facilities. The entire Gebos6 system, including
several frameworks, consists of 2500 C++-classes and was developed over the past five years. Against this background,
conclusions can be drawn about how to further develop, reuse and adapt frameworks. The presented solution could be
transferred to any kind of graphic workplace system embedded in the context of human work.

First, we look at the main problems encountered, when designing large software systems. Such a large software system
addresses and correlates the various tasks found in a business. It should be possible to configure and adapt the system to
the requirements of individual workplaces in several different enterprises. This can only be achieved by employing
framework technology. The framework layers of the Gebos system are therefore described and discussed in detail. The
following section describes layering techniques and divides frameworks into a concept and an implementation part.
These parts are combined to form concept and implementation libraries. Finally, we examine the Role Object design
pattern, which is used to make an object play different roles in different departments while remaining an integrated
component.

2 Framework Layering in Large Systems
A framework models a specific relevant domain aspect using classes and objects. Abstract classes define the model and
the interaction of their instances. Concrete classes provide default behavior and implementations of the abstract classes.
The abstract classes specify the flow of execution and can be tailored to specialized implementations by subclassing.

1 Dirk Bäumer (baeumer@takefive.ch) can be reached at TakeFive Software, Eidmattstrasse 51, 8032 Zurich, Switzerland.
2 Guido Gryczan, Carola Lilienthal, and Heinz Züllighoven (first.last@informatik.uni-hamburg.de) work at University of Hamburg, Germany.
3 Rolf Knoll (rolf_knoll@rwg.e-mail.com) can be reached at RWG GmbH, Räpplenstrasse 17, 70191 Stuttgart, Germany.
4 Dirk Riehle (Dirk.Riehle@ubs.com or riehle@acm.org) can be reached at Ubilab, UBS, Bahnhofstrasse 45, 8021 Zurich, Switzerland.
5 RWG stands for “Württemberg Co-operative Bank Computer Center”.
6 Gebos stands for “Banking Co-operative Office, Communication and Organization System”.

2

We describe an object-oriented software architecture using framework layers, the integration of different frameworks
and their customization making up the resulting system. Frameworks and framework layering must be rooted in the
application domain in order to meet business needs. We therefore begin by discussing how to relate application domains
to frameworks.

2.1 Application Domain Concepts

The services offered by a business enterprise such as a bank can be divided up into different areas of responsibility.
Traditionally, banks have organized their departments according to these different areas. Each department consists of
specialists, whose work is confined to their own field of expertise. We call these areas business sections (e.g., teller,
loan, investment, see Fig. 1). Today, the division into different departments is often supplemented by so-called service
centers offering customers an “all-in-one” service. Service center clerks can perform most of the common tasks
encountered in the various business sections. Business reorganization, thus, creates new types of workplaces. A concrete
form of work will be referred to as the workplace context (see Fig. 1). Examples of workplace contexts in the banking
business are:

• Customer service center: A customer receives advice on loans, bonds or investments.

• Teller service: Customers should receive a fast and qualified service for frequent and standard requests. Here, a clerk
has to deal with deposits, withdrawals, transfers and foreign currency.

• Automatic Teller Machines and home banking: The services of the bank are made directly available to its customers.

 For every workplace context, a different application system may potentially be required. For a workplace in a customer
service center, support is needed for the mixture of services from the different business sections. The customer
consultant needs access to both the loan and investment sections when advising a customer. At the same time, the system
must allow a simple money transfer.

 Although each application system is tailored to the needs of a particular workplace context, all should be built on the
same basis. Take the following example: Customer profiles exist in all departments of a bank. In the loans department,
sureties are an essential part of the customer profile. A surety serves to minimize the bank’s losses in the case of a
customer’s inability to pay. In the investments department, savings accounts form part of the customer profile. In both
departments, though, the customer’s name, address and date of birth are an integral part of the profile. Software
development for different workplace contexts needs to take into account these differences and similarities.

 Our approach is to identify the core or common parts of the concepts and terms that are essential to running the business
as a whole. We call these common parts the business domain (see Fig. 1). Cooperation within an organization is only
possible through the existence of these core elements in the business domain. In a bank, ‘account’, ‘customer’ and
‘interest rate’ are examples of overlapping business domain concepts.

Zcustomer service
center

teller service

teller loan investment

customer

currency account

business domain

business sections

workplace contexts

interest rate%

123 12 Gutschrift DM 1.230,--
124 13 Lastschrift - DM 230,--
125 20 Überweisung - DM 532,45
126 12 Gutschrift DM 36,50
127 13 Lastschrift - DM 87,34
128 20 Überweisung - DM 532,45
 Saldo DM 3.256,43

self-service

 Figure 1: Organizational concepts in the application domain

3

 Modeling of the business domain can only be done if at least two business sections are already supported by software
systems. Although the business domain forms the basis for the business enterprise as a whole, it is not tangible as such:
there is no place in a bank where ‘account’ or ‘ customer’ can actually be seen. Considering the relevance of the
business domain, we need to “reconstruct” the core concepts behind the different business sections in order to build an
integrated system.

 We believe that frameworks for this type of applications should be organized along business-domain, business-section
and workplace-context lines. In order to avoid unnecessary duplication, frameworks should be designed so as to
encourage or even enforce reuse of the business domain in the various sections. The reuse of framework components
then yields the basis for uniform and coherent application systems. In the following sections, we describe the close
correlation between application domain concepts and the framework architecture.

 2.2 Layers of the Gebos system

 The layers of the Gebos system take into account the distinction between the business section, the business domain, and
the workplace context. Several application systems can be based on the different business sections, and different
business sections can be based on the same business domain. Two additional framework layers offering general support
complete the Gebos system (see Fig. 2):

• Application Layers provide the software support for the different workplace contexts.

• Business Section Layers consist of frameworks with specific classes for each business section.

• Business Domain Layer contains the core concepts for the business as a whole.

• Desktop Layer comprises frameworks that specify the common behavior and general characteristics of applications.

• Technical Kernel Layer offers middleware functionality and includes specific object-oriented concepts.

Technical
Kernel
Layer

Desktop
Layer

Business Domain Layer

Application Layers

Business Section Layers

... ...

Teller Investment

Adviser
Desktop

TellerTelephone
Banking

....

...

G
raphic

Interface
M

O
P

C
ollections

V
al

ue
s

Fo
ld

er
s

T
oo

l
C

on
st

ru
ct

io
n

person
roles

account product

 Figure 2: Layers and frameworks of the Gebos system

 The framework layers in Fig. 2 are not arranged with the Application Layers at the top end and the Technical Kernel
Layer at the bottom. We have, instead, chosen a U-shape consisting of the Technical Kernel Layer, the Business Domain
Layer and the Desktop Layer. The U-shape of the layers represents a frame for the Business Section Layers and the
Application Layers. By enforcing the integration of the Business Section Layers and the Application Layers, further
development can only take place within this U-shaped frame, leading to a fast and efficient implementation of new

4

application systems. The Gebos system makes it possible to configure and adapt new application systems for a new bank
in a comparatively short time. We now go on to look at the basic functionality of each layer and the relations between
them.

 2.2.1 The Technical Kernel Layer

 The Technical Kernel Layer provides services to other layers and is used by the other framework layers - like a class
library with an API interface. Within the Gebos system, this layer encapsulates and stabilizes middleware functionality.
It consists of black box frameworks (see [6]). The frameworks in this layer can be classified as:

• Wrapper frameworks that include frameworks interacting with the underlying operating system, the window system,
client-server middleware, and data stores (such as relational databases, CD-ROM drives or host databases).

• Basic frameworks that comprise specific object-oriented concepts such as a meta-object protocol, late creation,
garbage collection including trace tool support, and a container library.

 The main idea is to reuse the functionality encapsulated by the Technical Kernel Layer. These frameworks are used by
all other layers, especially the Desktop Layer. They can be largely reused, as they do not incorporate any domain-
specific knowledge.

 2.2.2 The Desktop Layer

 The Desktop Layer comprises frameworks that specify the common behavior of applications, i.e the type of support for
interactive workplaces. Examples of frameworks in this layer are (see Fig. 2):

• The Tool Construction Framework, describing the general architecture of tools and their integration into an
electronic workplace (cf. [9]). This can be compared to the MVC framework (cf. [8]).

• The Folder Framework, offering classes such as File, Folder and Tray. Following the desktop metaphor, the Folder
Framework provides the familiar look and feel of interactive applications pioneered by the Macintosh system.

• The Value Framework enriches the standard value types offered by programming languages like C++ (e.g., Integer,
Char and Boolean). It provides classes containing the basic mechanism for domain specific value types (e.g.
AccountNumber), which can only be used with value semantics.

The Desktop Layer thus defines the basic architecture of interactive application systems and their look and feel. This
design decision ensures uniform behavior in the application systems as well as technical consistency. The Desktop Layer
frameworks are therefore used like white box frameworks (cf. [6]) by subclassing and implementing abstract methods
(see Business Section Layer). Frameworks belonging to this layer can be reused in any kind of office-like business
domain with graphic workplace systems.

2.2.3 The Business Domain Layer

The Business Domain Layer defines and implements the business’s core concepts as a set of frameworks based on the
Desktop and Kernel layer. It thus forms the basis for every application system in this domain. It is crucial to make an
appropriate division/separation between that part of a core concept that belongs to the business domain and the parts
belonging to the business sections. If the core concept in the business domain is too small, the missing parts have to be
duplicated for each business section, and consistency becomes a problem. If a core concept in the business domain
becomes overloaded, transporting an appropriate object between the various applications becomes cumbersome.

This layer consists of classes such as Account, Customer, Product and various domain-specific value types. Although
some implementations exist in this layer, most frameworks are white box and rather “thin”. The final implementation is
postponed to the Business Section Layers.

2.2.4 The Business Section Layers

The Business Section Layers are composed of separate partitions for each business section. The frameworks in these
partitions are based on the Business Domain, the Technical Kernel, and the Desktop Layers. They are implemented by
subclassing the Business Domain and Desktop Layer classes. Usually, each subclass only implements the abstract
methods predefined in the respective superclass. In this layer, we find classes like Borrower, Investor, Guarantor, Loan,
Loan Account, and tools for specific tasks within the business section.

Business section frameworks change more frequently than business domain frameworks. A business domain framework
should therefore only incorporate those core concepts that are relevant to most business sections. It should, however,
provide hooks that can be easily extended and customized for applications that use one or more business sections. To

5

relate the core concepts of the Business Domain Section to their extensions in the Business Section Layers the Role
Object Pattern has been developed (see below).

2.2.5 The Application Layers

The separation of the Application Layers from the Business Section Layers is motivated by the need to configure
application systems corresponding to different workplace. The Gebos system has to support business activities in a wide
range of banks, from those with only a few branches to large ones with over a hundred. Applications configured to meet
the different workplace context requirements of an individual bank can be found in this layer.

3 Framework Construction for Large Systems
We now go on to discuss the internal structure of frameworks and layers and the relations between them. First, the
internal structure has to be chosen such as to minimize the coupling between different frameworks and application
systems. Reopening frameworks during application system development should also be avoided. Second, the design and
implementation of business domain frameworks should be independent of any business section framework. We have
employed various patterns in the Gebos system, but the Role Object Pattern is crucial for the integration of the business
domain and business sections. This pattern will therefore be described in detail.

3.1 Structuring of Frameworks in Library Layers

Based on the discussion above, we group class hierarchies to form frameworks. A framework of the Gebos system does
not match a specific class hierarchy, but contains parts of different class hierarchies. This contrasts with the traditional
way (cf. [7]) of aligning class hierarchies and frameworks (see Fig. 3).

Each framework of the Gebos System is divided into a concept part and one or more implementation parts (see Fig. 3).
The concept part is modeled according to the concepts of the application domain. The implementation part subclasses
the corresponding classes of the concept part. The former is developed with technical aspects in mind. Without this
separation one cannot discuss the various dependencies between classes with an explicit focus on either the technical or
the conceptual part.

Layer x (e.g. Business Domain Layer)

Framework B
Concept part

Implementation
part

Framework C
Concept part

Implementation
part

Framework A
Concept part

Implementation
library (DLL4)

Implementation
library (DLL3)

Concept library (DLL 1)

Implementation
library (DLL5)

Concept library (DLL 2)

layer x + 1 (e.g investment
partition of the Business section layer)

Implementation
library (DLL9)

Concept library (DLL 8)

Framework B
Implemenation part

layer x +1
(e.g loan partition of the Business section layer)

Implementation
part

Framework D
Concept part

Implementation
library (DLL7)

Concept library (DLL 6)

Framework B
Implemenation part

Implementation
part

Framework E
Concept part

Figure 3: Division of frameworks into concept and implementation parts

After dividing each framework into a concept and implementation part, we physically package concept parts into
concept libraries, and implementation parts into implementation libraries. The structure of the concept libraries need not

6

correspond to the structure of the implementation libraries. In our example, Framework A is divided into two
implementation parts, each forming a separate implementation library. The concept parts of Framework A and B are
packaged into one concept library.

The framework parts themselves are organized in layers according to application domain concepts. Concept and
implementation parts of one framework do not therefore necessarily belong to the same layer (see Fig. 3, Framework B).
This enables us to describe a concept in the Business Domain Layer and provide different implementations according to
specific business sections. The frameworks in the Business Domain Layer in Fig. 2, for example, consist only of concept
parts for the core concepts. The implementation parts are located in the frameworks of the Business Section Layers.

The use of classes belonging to other layers is restricted to the concept classes of a framework. Implementation parts of
frameworks can then be changed without affecting those classes that use the concept part. To avoid cyclic dependencies
a framework should only be used by classes contained in frameworks of higher layers.

By offering libraries that include either several concept or implementation parts of frameworks per layer, the
configuration of different application systems is facilitated. Each application system consists of only those libraries
needed for operation. The different frameworks are provided in DLLs to ensure that framework classes cannot be
changed at will. All application systems are thus built according to the same schema. This is extremely important for
classes that predefine and partially implement the flow of control for an application system (see Desktop Layer).

To realize the decoupling between concept and implementation parts, clients should use a creational pattern, such as
Factory Method or Prototype [5], to hide the selection of a particular implementation of a concept class. A pattern, that
has proved to be particularly effective, is the Product Trader pattern [1].

The division into concept and implementation parts is a prerequisite for developing an integrated system because we can
supply a concept part in the Business Domain Layer and several implementation parts in the Business Section Layers. In
the following section, we describe how to connect the classes of the concept part with those of the various
implementation parts.

3.2 The Role Object Pattern

A simple way to connect concept and implementation parts is to subclass a class from the Business Domain Layer. This,
however, means that two instances of different subclasses are not identical. If they are meant to be conceptually
identical, it becomes hard to use them as a consistent representation of one logical object. We apply the Role Object
Pattern to make one logical object span one or more layers. The core object, which resides in the business domain layer,
is extended by role objects, which reside in the business section layers.

A role is a client-specific view of an object playing that role. One object may play several roles, and the same role can
be played by different objects. An instance of a core concept belonging to the business domain may play several roles in
different business sections. For example, in the loan business section, ‘customer’ could play the role of ‘borrower’ or
‘guarantor’. In the investment business section, ‘customer’ could play the role of ‘investor’. These three roles could also
be played by the same customer, in real life as well as in the system model.

InvestorGuarantorBorrower

Customer

Business Section
Layer

Business Domain
Layer

Client

CustomerRoleCustomerCore

core
roles

Application
Layers

Figure 4: Example of a Role Object Pattern

7

We use a combination of design patterns, collectively called the Role Object Pattern, to attach business section roles to
core concept objects. Figure 4 illustrates the design of the customer example. Using the Decorator pattern, a core
concept such as ‘customer’ is defined as an abstract Customer superclass - as a pure interface without any
implementation state. The class CustomerRole is a subclass of Customer and “decorates” a Customer object at runtime.
The CustomerCore class implements the core of the Customer abstraction. We use Product Trader to create and manage
role objects at runtime [1].

At runtime, instances of CustomerRole forward calls to the decorated Customer object (see Fig. 5), which is a
CustomerCore instance. Clients work either with objects of the CustomerCore class, using the interface class Customer,
or with instances of CustomerRole subclasses. By asking the CustomerCore object for a specific role, a client can obtain
the respective role object.

Client CustomerCore

Borrower

Investor

role

role

core

core

Figure 5: Role Object Pattern at runtime

The Role Object Pattern lets us handle a complex logical object spanning several layers as one coherent integrated
object. Role objects from different business sections (e.g., borrower, guarantor or investor) share the same
CustomerCore object. Business section specific role objects can be created on actual demand.

We view roles and classes as domain modeling constructs. Others have chosen to ban classes as pure implementation
constructs (most notably [8]). For us, a class defines a domain abstraction, which includes the roles that class instances
can play. A role defines a context-specific view of an object. On this level, we have to distinguish between technical and
conceptual identities. The entire logical object has an identity of its own, even though its role objects maintain their own
technical identity.

3.3 Combining Roles and Frameworks

Using the Role Object Pattern frequently leads to a concept part and its implementation parts being located in different
layers (see Fig. 3). The concept framework of the Business Domain Layer consists of the Customer, CustomerCore and
CustomerRole classes, as well as other core concepts such as Account and Product. Their implementation can be found
in implementation frameworks of different Business Section Layers.

This organization of frameworks in concept and implementation parts (see Fig. 6) ensures that extensions to any
business domain concepts can be made without reopening the concept part of a framework. If a new business section is
to be supported (e.g., housing loans or foreign currency), a new layer with various implementation parts for the concept
part of a framework is added to the system. Based on the added Business Section Layer, new applications and
extensions of existing applications can be implemented without affecting other layers.

Changes to one business section concern only the classes in the corresponding Business Section Layer. If a new type of
saving is to be added to the investment layer, the implementation frameworks must be extended by a new product and a
new savings account. None of other Business Section Layers will have to be changed.

Changes to the core concepts in the Business Domain Layer are the only ones that affect all other layers. A change in the
classes Customer, Account or Product will change all other layers (see Fig. 6). However, changes to a stable and well
designed Business Domain Layer do not occur very often. Such changes can only be caused by a major reorientation of
the entire business strategies and services of a company.

Fig. 6 is a simplified representation of the Gebos system’s layers and frameworks. The Business Domain Layer does not
consist of one framework only, but contains several of them (see Fig. 2).

8

Customer

Borrower

Investor

CustomerRoleCustomerCore

ProductAccount

Savings account

Loan account Loan

Savings with
special terms

Concept part of the
Business Domain Layer

Implemenation part
of the Business Section Layer

for investment

Implementation part
of the Business Section Layer

for loans

Figure 6: Classes of the Role Object Pattern spread over different frameworks

4 Conclusion
In this paper, we have shown how frameworks can be categorized and layered to match their application domains and
the business’s organizational structures. We defined the categories business domain, business section, and application
framework. Based on these distinctions, we showed how frameworks can be layered in order to manage their
dependencies and reduce their coupling. We pointed out how to split a framework into a concept part and several
implementation parts, and how to support this split by the use of design patterns.

A particularly important issue is building and maintaining logical objects that span several layers. We use the Role
Object Pattern to adapt a core concept from the business domain to different business sections. Using role objects allows
us to extend a core concept without having to change it, and thus without having to touch the business domain
frameworks.

The presented approach supports the development of frameworks and systems that are both stable and capable of
evolving elegantly and at different speeds.

Bibliography
1. Bäumer, D. and Riehle, D. Product Trader. In R. Martin, D. Riehle, and F. Buschmann, Eds., Pattern Languages

of Program Design 3. Addison-Wesley, Reading, Mass., 1997.

2. Bürkle, U., Gryczan, G. and Züllighoven, H. Object-Oriented System Development in a Banking Project:
Methodology, Experience, and Conclusions. Human-Computer Interaction, Special Issue: Empirical Studies of
Object-Oriented Design 2 & 3, 10 (1995), 293-336.

3. Bäumer, D., Knoll, R., Gryczan, G. and Züllighoven, H. Large Scale Object-Oriented Software-Development in a
Banking Environmen - An Experience Report. In ECOOP ‘96 (July 11-12, Linz, Austria). LNCS 1098, Springer
Verlag, Berlin, 1996, 73-90.

4. Garlan, D., Allen, R. and Ockerbloom, J. Architectural Mismatch: Why Reuse Is So Hard. IEEE Software 12, 6
(November 1995), 17-26.

5. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Mass.: 1995.

6. Johnson, R. E. and Foote, E. Designing reusable classes. Journal of Object-Oriented Programming 1, 2
(June/July 1988), 22-35.

7. Lewis, T. Object-Oriented Application Frameworks. Prentice-Hall, New York, 1995.

8. Reenskaug, T. Working with Objects. Prentice-Hall, New York, 1996.

9. Riehle, D. and Züllighoven, H. A Pattern Language for Tool Construction and Integration. In J. O. Coplien and
D. C. Schmidt, Eds., Pattern Languages of Program Design. Addison-Wesley, Reading, Mass., 1995.

