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Abstract. A secret sharing scheme allows to share a secret among sev-

eral participants such that only certain groups of them can recover it.
Veri�able secret sharing has been proposed to achieve security against

cheating participants. Its �rst realization had the special property that

everybody, not only the participants, can verify that the shares are cor-
rectly distributed. We will call such schemes publicly veri�able secret

sharing schemes, we discuss new applications to escrow cryptosystems

and to payment systems with revocable anonymity, and we present two
new realizations based on ElGamal's cryptosystem.

1 Introduction

A secret sharing scheme [20, 2] allows to split a secret into di�erent pieces, called
shares, which are given to the participants, such that only certain groups of them
can recover the secret. The �rst secret sharing schemes have been threshold
schemes, where only groups of more than a certain number of participants can
recover the secret.

Veri�able secret sharing (VSS) is a cryptographic primitive proposed in [7] to
achieve security against cheating participants. A veri�cation protocol allows the
honest participants to ensure that they can recover a unique secret. VSS plays
an important role in the design of protocols for secure multi-party computation
(see e.g. [1]). The �rst realization of VSS, presented in [7], has the very special
property that not only the participants, but everybody is able to verify that the
shares have been correctly distributed. We will call such schemes publicly veri�-

able secret sharing (PVSS) schemes. Apart from the applications for \ordinary"
VSS, PVSS can be used for new escrow-cryptosystems, and for the realization
of digital payment systems with revocable anonymity.

The main technical results of this paper are two new PVSS schemes which can
also be used with general (monotone) access structures. Both schemes are based
on ElGamal's cryptosystem [9]. Furthermore, the security of the �rst scheme can
be proved to be equivalent to some well-known cryptographic problems.
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2 Publicly Veri�able Secret Sharing and Applications

2.1 An Informal Model of PVSS

In the sequel we give a informal description of secret sharing, veri�able secret
sharing, and publicly veri�able secret sharing. It is not our goal to present a pre-
cise mathematical de�nition, but to illustrate the basic properties of the schemes
and to point out the di�erence between ordinary and publicly veri�able secret
sharing.

A secret sharing scheme consists of a dealer, n participants P1; : : : ; Pn, and an
access structure A � 2f1;:::;ng. The access structure is monotone, which means
that if A 2 A and A � B then B 2 A. For instance, in a threshold secret
sharing scheme with threshold k the access structure is de�ned as A = fA 2
2f1;:::;ng j jAj � kg ; which means that any coalition of at least k participants
can recover the secret.

To share a secret s among the participants, the dealer runs an algorithm
Share

Share(s) = (s1; : : : ; sn)

to compute the shares. The dealer then sends each share si secretly to Pi, i =
1; : : : ; n. If a group of participants wants to recover the secret, they run an
algorithm Recover, which has the property that

8A 2 A : Recover(fsiji 2 Ag) = s ;

and that for all A 62 A it is computationally infeasible to calculate s from fsiji 2
Ag. Thus, only those coalitions of participants de�ned by the access structure
A are able to recover the secret s. A secret sharing scheme is called perfect if for
all A 62 A the shares fsiji 2 Ag give no Shannon information about the secret.

One problem of such secret sharing schemes is that they are not secure against
cheating participants who send false shares when the secret is to be recovered.
Another problem is that a cheating dealer could distribute false shares, so that
di�erent groups of participants recover di�erent secrets. Such problems arise in
protocols for secure multi-party computations (see e.g. [1]), and can be solved
with veri�able secret sharing (VSS) schemes [7].

A VSS scheme is a secret sharing scheme with an additional, possibly inter-
active algorithm Verify which allows the participants to verify the validity of
their shares:

9u 8A 2 A : (8i 2 A : Verify(si) = 1) ) Recover(fsiji 2 Ag) = u,

and u = s if the dealer was honest.

In other words, all groups of participants recover the same value if their shares
are valid, and this unique value is the secret if the dealer was honest. A VSS
scheme is called non-interactive, if the algorithm Verify requires no interaction
between the participants [11].



But even with a non-interactive VSS scheme, the participants can verify the
validity of only their own shares, but they cannot know whether other partici-
pants (with whom they might be able to recover the secret) have also received
valid shares. This problem can be solved with publicly veri�able secret sharing
(PVSS). In a PVSS scheme a public encryption function Ei is assigned to each
participant Pi, such that only he knows the corresponding decryption function
Di. The dealer now uses the public encryption functions to distribute the shares
by calculating

Si = Ei(si); i = 1; : : : ; n

and publishing the encrypted shares Si. To verify the validity of all the encrypted
shares, there is an algorithm PubVerify with the property that

9u 8A 2 2f1;:::;ng :
(PubVerify(fSiji 2 Ag) = 1) ) Recover(fDi(Si)ji 2 Ag) = u

and u = s if the dealer was honest. In other words: If a set of encrypted shares is
\good" according to PubVerify, then the honest participants can decrypt them
and recover the secret. Note that PubVerify can be executed even if the partici-
pants have not received their shares so far. To run PubVerify it may be necessary
to communicate with the dealer (but not with any participant). A PVSS scheme
is called non-interactive if PubVerify requires no interaction with the dealer at
all.

Theoretically, PVSS could be realized using techniques of [4] to prove (or
to argue about) the satis�ability of a circuit, but this would be very ine�cient.
We will present more practical solutions for sharing discrete logarithms and for
sharing e-th roots in Sections 3 and 4, respectively. Both schemes are based on
ElGamal's cryptosystem [9].

2.2 Applications of PVSS

Apart from the applications of ordinary secret sharing and of VSS, there are
two interesting problems for which PVSS can be used. One of those is software
key escrow, such as Micali's fair cryptosystems [16]. The basic idea of fair cryp-
tosystems is that any user shares his secret key among several trustworthy (from
the user's point of view) escrow agents by means of a VSS scheme. Each escrow
agent can verify that he obtained a correct share of the secret key. However,
one problem of such fair cryptosystems is that the recipient of an encrypted
message decides on the set of trustworthy escrow agent, although the sender of
the message might trusts a di�erent set of agents. Furthermore, the set of es-
crow agents can only be changed by changing the key. A better solution for this
problem would be to have the sender provide information for the escrow agents
to decrypt the message. Such a system could be realized using a non-interactive
PVSS scheme with an access structure that allows the recipient as well as a the
escrow agents to recover (i.e. decrypt) the message. Since the encrypted shares
can be publicly veri�ed, everybody, e.g. any network provider, can verify that
the message could be recovered by a legitimate subset of escrow agents.



Another application of PVSS is the design of electronic cash systems pro-
viding revocable anonymity [5, 21, 15, 6]. Payments made with such systems
are (usually) not traceable to the payer, but if the anonymity of the scheme
is abused for criminal activities, the payer's identity can be recovered with the
help of so-called trustees or judges. PVSS could be used to veri�ably encrypt
tracing-information for the trustees in a transaction without compromising the
anonymity of that transaction.

3 PVSS for Sharing Discrete Logarithms

We will �rst describe two well-known methods for veri�ably sharing discrete
logarithms. The veri�cation for both schemes consists of checking whether the
secret share is the discrete logarithm of a publicly known element. Therefore,
these schemes can be extended to PVSS schemes by means of an encryption
scheme that allows to verify that a cipher-text contains the discrete logarithm
of a given value. Let us �rst briey describe the number-theoretical setting.

3.1 Double Exponentiation and Double Discrete Logarithms

Let p be a large prime so that q = (p�1)=2 is also prime1, and let h 2 ZZ
�
p be an

element of order q. Let further G be a group of order p, and let g be a generator
of G so that computing discrete logarithms to the base g is di�cult.

Our scheme will make use of double exponentiation. By double exponentia-
tion with bases g and h we mean the function

ZZq ! G : x 7! g(h
x) :

By the double discrete logarithm of y 2 G to the bases g and h we mean the
unique x 2 ZZq with

y = g(h
x)

if such an x exists.

3.2 Veri�able Sharing of Discrete Logarithms

Let s 2 ZZp be the secret value and let S = gs be publicly known. There are
di�erent ways to veri�ably share this secret. We �rst present a solution for
general monotone access structures, and then briey describe a threshold scheme
[11, 18].

Let A be a monotone access structure. For each A = fj1; : : : ; jkg 2 A, the
dealer proceeds as follows: He computes the secret shares

sAi =

�
randomly chosen in ZZp for i = j1; : : : ; jk�1

s �
Pk�1

`=1 sAj` (mod p) for i = jk

1 This property is necessary in order to prove the security of the scheme.



and secretly sends sAi to the participant Pi. The values SAi = gsAi are published
so that everybody can verify that

8A 2 A :
Y
i2A

SAi = S:

The participant Pi can verify his share by checking whether sAi is the discrete
logarithm of SAi. Note that this construction is quite unpractical for large access-
structures.

To share s in a threshold-scheme with threshold k, a publicly-known element
xi 2 ZZp, xi 6= 0 is assigned to each participant Pi. The dealer chooses random
elements fj 2 ZZp, j = 1; : : : ; k�1, and publishes the values S = gs and Fj = gfj ,
j = 1; : : : ; k � 1. Then he secretly sends to each Pi the share

si = s +

k�1X
j=1

fjx
j
i (mod p)

Any group of at least k participants can now compute s using Lagrange's inter-
polation formula. To verify a share si, the participant Pi can compute

Si = S �

k�1Y
j=1

Fj
(x
j

i
)

and check whether Si = gsi . See [11, 18] for further details.
To make these schemes publicly veri�able, we need a public-key encryption

scheme that allows to veri�ably encrypt the discrete logarithm of a publicly
known element. In other words, given a cipher-text W and a group element S,
it should be possible to convince everybody that the recipient obtains logg S by
decrypting W .

3.3 Veri�able Encryption of Discrete Logarithms

Our encryption scheme is identical to ElGamal's public key system [9], which is
a variation of the Di�e-Hellman key-exchange protocol [8].

First, each participant randomly chooses a secret key z 2 ZZq and publishes
his public-key y = hz (mod p). To encrypt a messagem 2 ZZ

�
p with the public-key

y, the dealer randomly chooses � 2 ZZq and calculates the pair

(h�;m�1 � y�) (mod p):

The cipher-text (A;B) can be decrypted by the recipient by calculating

m = Az=B (mod p):

Let us now describe a protocol for verifying that a pair (A;B) encrypts the
discrete logarithm of a public element V = gv of the group G. It is based on the
fact that if (A;B) is equal to (h�; v�1 � y�) (mod p) for any � 2 ZZq then

V B = gvB = g(y
�):



The prover (who will be the dealer in the secret sharing scheme) now proves
to the veri�er that the discrete logarithm of A to the base h is identical to the
double discrete logarithm of V B to the bases g and y.

Prover Veri�er

repeat K times:

w 2R ZZq

th = hw (mod p)

tg = g(y
w)

-
th, tg

c 2R f0; 1g
�

c

r = w � c � � (mod q)
-

r

th
?
= hrAc (mod p)

tg
?
=

(
g(y

r) if c = 0

V (B�yr) if c = 1

With the techniques of [12] for converting an identi�cation scheme into
a signature scheme, combined with ideas from [19], we can construct a non-
interactive \proof": Let H` : f0; 1g� ! f0; 1g` be a cryptographically strong
hash-function (` � 100). For i = 1 : : : `, the prover chooses wi 2R ZZq and calcu-
lates thi = hwi (mod p), and tgi = g(y

wi ). Then he computes the `-tuple

R = (r1; : : : ; r`) = (w1 � c1� (mod q); : : : ; w` � c`� (mod q))

where ci denotes the i-th bit of

c = H`(V jjAjjBjjth1jjtg1jj : : : jjth`jjtg`) (*)

The non-interactive proof consists of R and c. A veri�er computes thi =
hriAci (mod p) and tgi = (g1�ciV ciB)(y

ri ) for i = 1 : : : `, and checks whether (*)
holds.

3.4 Analysis

There are two points to consider when discussing the security of the scheme.
First, even if we assume that computing discrete logarithms and breaking El-
Gamal's public-key system is hard, we have to check whether computing v from
both V = gv and the cipher-text (A;B), is also hard. Second, we have to make
sure that the dealer cannot cheat in the veri�cation protocol and that no \useful"
information about v is given away. We can prove the following two propositions.



Proposition1. Under the assumption that computing discrete logarithms in G

is infeasible, and that breaking the ElGamal cryptosystem is hard, computing v

from gv and (h�; v�1y�) is at least as hard as solving the Decision-Di�e-Hellman

problem to the base h in ZZ
�
p.
2

Sketch of Proof: Note that it is possible to decide whether the encrypted log-
arithm v is a quadratic residue in ZZ

�
p, because the base h (and the public key

y) is a quadratic residue, but that it remains di�cult to break ElGamal's cryp-
tosystem, i.e. to completely recover the encrypted message.

Assume that there is an e�cient algorithm P that computes v on input
(gv; hz; h�; v�1h�z) with a non-negligible probability " over all v 2 ZZ

�
q , and

z; � 2 ZZ
�
q . We show how to use P to decide whether a given triple (A;B;C) of

elements in hhi, is a Di�e-Hellman triple, i.e. whether C = hloghA�loghB (mod p).

First, we need a method to randomize (A;B;C). Therefore, we choose � 2 ZZ
�
q ,

and �; � 2 ZZq at random and calculate ( �A; �B; �C) = (A�h�; Bh� ; C�A��B�h�� ).
Since q, the order of h in ZZ

�
p, is prime, it can easily be shown that the triple

( �A; �B; �C) is a randomDi�e-Hellman triple if (A;B;C) is a Di�e-Hellman triple,
and a random non-Di�e-Hellman triple, otherwise.

Now, we randomly choose v 2 ZZ
�
q and run P on input (gv; �A; �B;v�1 �C). The

probability that P returns v depends on whether (A;B;C) is a Di�e-Hellman
triple or not:

{ If (A;B;C) is a Di�e-Hellman triple then P returns v with probability ".

{ If (A;B;C) is not a Di�e-Hellman triple then the probability that P returns
v is negligible. Let us assume on the contrary that P returns v with a non-
negligible probability . Then the discrete logarithm of any Y 2 G can be
computed by repeatedly running P on input (Y g�;h�;h� ;t) with � 2R ZZp,
�; � 2R ZZq , and t 2R ZZ

�
p until P returns � + logg Y (mod p). Because the

probability that t=(� + logg Y ) (mod p) 2 hhi is approximately 1=2, the
expected number of repetitions is 2=.

After su�ciently many repetitions, a decision on whether (A;B;C) is a Di�e-
Hellman triple can be made with arbitrarily small probability of error.

Proposition2. The prover in the interactive protocol in Section 3.3 can suc-

cessfully cheat with a probability of at most 2�K . The protocol is perfectly zero-

knowledge.

Sketch of Proof: It can easily be seen that if in one round both challenges, c = 0
and c = 1, can correctly be answered then the claim holds, i.e. the logarithm of
A to base h is equal to the double logarithm of V B to the bases g and h. So if the
claim does not hold, i.e.the two logarithms are di�erent, a cheating prover can
prepare tg and th for only one challenge and will therefore be caught at cheating
with probability 1=2 in this round.

Zero-knowledgeness can be shown using standard techniques for constructing
a simulator. 2

2 See [3] for a discussion of the Decision-Di�e-Hellman problem.



4 PVSS for Sharing e-th Roots

Methods similar to those presented in the previous Section can be used to share
an e-th root of an element in a group ZZ�n, where the factorization of n is unknown.
For example, n and e could be the public parameters of a Fiat-Shamir [10] or
a Guillou-Quisquater [14] signature scheme. A veri�able sharing scheme with
general access-structure can be constructed in a similar way as described in
Section 3.2; for the construction of a threshold scheme see [11]. What remains to
show is an encryption scheme that allows to e�ciently prove that a cipher-text
contains the e-th root of a given element.

4.1 Veri�able Encryption of e-th Roots

Let g 2 ZZ
�
n be a public value of large order. Each participant randomly chooses

a secret key z 2 ZZn and computes the corresponding public key y = gz (mod n).
A sender can now encrypt a value m 2 ZZ

�
n by randomly choosing � 2 ZZn

and calculating

A = g� (mod n); and B = m � y� (mod n):

The recipient can easily obtain the e-th root of M by calculating

m = B=Az (mod n):

With the following interactive protocol the sender can prove that the pair
(A;B) encrypts the e-th root of M = me (mod n) (� > 0).

Prover Veri�er

repeat K times:

w 2R f0; : : : ; d2`n1+�eg
tg = gw (mod n)
ty = yew (mod n) -

tg , ty

c 2R f0; : : : ; 2` � 1g
�

c

r = w � c � �
(calculation in ZZ)

-
r

tg
?
= grAc (mod n)

ty
?
= yer(Be=M )c (mod n)

For a non-interactive proof we need a cryptographically strong hash-function
H` : f0; 1g� ! f0; 1g`. The sender chooses a random w 2 f0; : : : ; d2`n1+�eg
and computes tg = gw(mod n), ty = yew (mod n), c = H(M jjAjjBjjtgkty), and
r = w � c � �. The resulting proof is (r; c); veri�cation is straightforward. If M



and the cipher-text (A;B) are included, the whole share has a length of only
2` + (4 + �) � log2 n bits. For a \practical" scheme we recommend to choose
n > 2750, ` > 80 and � � 1

5
.

4.2 Analysis

As in Section 3.4, we have to consider the security of the encryption scheme and
the security of the veri�cation protocol. Unfortunately, a statement similar to
proposition 1 is di�cult to prove. This is mainly because the order of g is not
prime and therefore a good randomization of non-Di�e-Hellman triples is not
possible anymore. If we required that the order of g is prime, then the security of
the scheme could only be proved (in the manner of proposition 1) for messages
m that belong to the subgroup generated by g.

For the security of the veri�cation protocol, we can prove the following propo-
sition:

Proposition3. The prover in the interactive protocol in Section 4.1 can suc-

cessfully cheat with a probability of at most 2�K`. The protocol is statistically

zero-knowledge if ` = O(log logn).

Sketch of Proof: The �rst claim can be proved in a similar manner as for propo-
sition 2. For proving zero-knowledgeness we construct a simulator that �rst ran-
domly chooses r 2 f0; : : : ; d2`n1+�eg, guesses c 2 f0; : : : ; 2` � 1g, computes tg
and ty, and then checks whether c was correctly guessed or not (according to the
veri�er's strategy). For ` = O(log logn) this simulator runs in expected polyno-
mial time. It remains to show that the output of the simulator and the output
of the protocol are statistically indistinguishable (see [13] for de�nition). 2
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