
Information Retrieval -
from Academic Research to Practical Applications

Hans-Peter Frei
UBILAB, Union Bank of Switzerland

Bahnhofstrasse 45
8021 Zurich, Switzerland

E-mail: Hans-Peter.Frei@ubs.com

Abstract

Information Retrieval (IR) as a discipline did not originate from an urgent need of pro-
fessionals to master today's information explosion. Nor is the content of the relatively
small test collections employed in the past by IR research in line with the kind of informa-
tion professionals are faced with at the present time. Only recently IR researchers have
started to study real-life problems and have realized that the information which enterprises
invariably encounter is highly unstructured, heterogenous, multi- and hypermedia, and of
varying quality. Because of the requirements imposed by today's professional life,
Information Technology (IT) software becomes increasingly complex. We argue in this
paper that it is an advantage to use a framework approach—an advantage not only for
operational IR applications but also for research purposes, particularly for the evaluation of
indexing and retrieval techniques. The IR framework FIRE is being developed along these
lines. The rationale for developing FIRE is discussed, and the structure and some of the
basic properties of FIRE are explained.

1 Information and Information Retrieval

It is not the aim of this article to repeat the technological achievements of the past decades
nor to predict what technology will bring us in the decades to come. Likewise, the often
cited information explosion is a well-known fact and its effect on the life of many profes-
sionals should not be reiterated either. Rather, we want to summarize what Information
Retrieval (IR) research has accomplished in the past and to what effect the achievements of
IR research have been put into practice in real-life environments. Hence, we will reflect
upon different kinds of information, upon the value and price of information, and upon the
expectations of practitioners concerning IR research results.

It is often argued that information in the past used to consist of text only and, because
of this single medium, searching for information was easier. There have, of course, always
been other types of information, like speech, gesture, images, etc., but indeed text was the
only information type that was stored on a medium (e.g. on paper) and was therefore
searchable. With the advent of new recording equipment many other kinds of information
started to grow into entire collections. When a need for searching mechanisms emerged,

Information Retrieval - from Academic Research to Practical Applications

indexing and retrieval methods evolved, often imitating the methods devised for texts.
With the extreme mixture of media, called multimedia information, the task of retrieving
specific information became increasingly difficult. In addition, hyperstructures emerged as
in hypertexts or the world-wide web (WWW) which made the searching for specific facts
in hypermedia collections even more difficult. Solving these problems is the objective of
many research projects in the area of IR at the present time.

Value and price of information vary enormously, depending on the demand, the kind
of information, its origin, and its supplier. Information can be expensive or free, it can be
valuable or useless, it can be accurate or plethoric as we know only too well from the
Internet. However, most of the time information has a price and consumers have to decide
whether or not they are willing to pay the money asked for. As a consequence, some
people pay money for information and others make money by selling information.
Information has become a commodity and is easily shipped around the entire world nowa-
days, in contrast to the information on the outcome of the battle of Marathon for whose
deliverance Philippides, the first Marathon runner, paid with his life over two millennia
ago.

The emphasis of this paper is neither on telecommunication nor on the price of infor-
mation. Rather the focus is the discipline of IR. From the term information retrieval one
could conclude that IR originated from an urgent need of professionals to search for impor-
tant facts in vast amounts of information. It is remarkable that this is not the case. Rather,
IR originated in the field of library science and used to be synonymous with retrieving
records whereby the term 'record' signified a library record, i.e. an entry in a library
catalog. Partly for this reason the IR research community has had very little impact on
those professionals concerned with systematically collecting, storing, and retrieving infor-
mation.

These practitioners striving to master today's information explosion often consulted
the IR literature in the hope of finding advice. Frequently, they realized after a while that
IR research did not concentrate on their problems and often they were frustrated by having
understood what IR researchers were suggesting.

Less than a decade ago this situation started to change; IR researchers and practitioners
started to interact. But the situation will have to change even more in the not too distant
future. It has to change because practitioners want researchers to work on the problems
dictated by commercial needs. The hope is that researchers will soon work on these
challenging new problems in environments unknown to them before. This change of
direction is even accelerated by the increasing policy of granting agencies to require that
proposed projects have a high degree of practicability.

In the remainder of this paper we will concentrate on the practitioner's view and
requirements as well as on our view of the problem and our efforts to solve it.

2 Academic Research and the Practitioner's View

As pointed out above, IR research has for quite some time been moving away from its
realm of bibliographic references and lusterless test collections. A good example are the
TREC experiments and conferences that started in 1992 as contests between IR researchers

Hans-Peter Frei

[6]. One started to compare IR system results on a new very large test collection, called
TIPSTER, whose size of several GByte exceeds the traditional IR test collections by a few
orders of magnitude. In addition, TREC recently introduced non-English documents and
included them in the contest.

For years on end, academic researchers studied how to index, store, and retrieve bibli-
ographic references, calling their discipline information retrieval rather than reference
retrieval. Thus, for a long time, IR was concerned with finding a very restricted kind of
information and the term 'information' retrieval was a real misnomer. Retrieving relevant
bibliographic references is certainly a valid problem useful to some people. But it clearly
does not reflect the majority of the problems that have to be solved facing today's in-
formation explosion. Business analysts, journalists, and scientists hardly ever need biblio-
graphic references for their work. Most of the time they need facts, i.e. direct information
about the problem area they are working in; oftentimes they have neither the interest nor the
time to follow-up references, get articles from the library, and read papers.

Yet, it is not only the amount of information that constitutes a problem. While we
know reasonably well how to index, store, and retrieve text, non-textual information
becomes more and more important. Hypertext and multimedia IR have become buzzwords
in the past few years and many an IR researcher has started to extend traditional IR methods
to be applied to hypermedia information. Hard problems have been tackled, such as the
retrieval of content-related information from collections of video tapes or hypertexts. The
simple solution of describing video material or images by textual descriptors [10] is
cumbersome and does not work sufficiently well. Determining scene changes in movies is
still a research topic, the combining of indexing features from the image and sound track of
a movie is another problem of investigation, and the combining of retrieval status values
(RSV) across media boundaries is not yet solved. Furthermore, augmenting retrieval
algorithms by making them follow hypertext links is a rather precarious undertaking and
still needs a fair bit of investigation [4].

It is certainly worthwhile to study all these largely unsolved problems and when they
are once solved, the ability to seek information in hypermedia collections will be useful for
professionals in the film and TV business as well as for the general public interested in
information that happens to be in a hypermedia form. This concerns not only video mate-
rial, which is growing exponentially, but also an encyclopedia because it contains
references to other entries and hence constitutes a hypertext. It is to be expected that the
number of widely used operational hypertext and hypermedia systems will grow and it is
obvious that this is the case with the information in the WWW. For this reason, the interest
in hypertext and hypermedia information retrieval is rising significantly. Most likely, it will
boost further research activities in this area.

3 Needs of Professional Users

There is a vast literature on the needs of users mostly concerned with how IR systems are
interfaced to users, i.e. with human-computer interaction (HCI) problems. HCI is a crucial
issue, especially for IR systems that are typically used by a great deal of casual users.
Nevertheless, HCI will not be the emphasis of the remainder of this paper.

Information Retrieval - from Academic Research to Practical Applications

Rather, we will be concerned with the word 'professional' used in the above title.
When referring to professional users we are not saying that we consider some users pro-
fessional and others unprofessional. However, we explored the IR needs of users working
for a large financial institution and called their needs 'professional'. These needs contrasted
sharply to the more fictitious needs of 'laboratory' users who participate in IR experiments.
We examined both the vast amount and the various types of information these profession-
als have to deal with. Not unexpectedly, we still found a great deal of text on paper. In
addition, text in machine-readable form plays an ever-increasing role: text in word
processor formats, text delivered by news feeds, spread sheet data, etc.

In addition, we found important non-textual information, such as tables (balance
sheets are basically tables), graphs, charts (e.g. organizational charts), numeric data, etc.
The different types of information are usually mixed: a table contains figures and text, an
overhead transparency may contain text, figures, charts, and even images. Also the
sources are manifold, a great deal of information comes from internal sources and is, there-
fore, easy to monitor and control. On the other hand, there is also external information
from magazines, newspapers, public relations statements, electronic news wires, and the
like.

In comparison to other information-gathering activities, a different way of classifying
pieces of information became apparent: the quality of information. The professionals we
talked to deal with rumors, information from mass media, from reputable journals, from
official sources, and from internal sources. The quality of information depends on various
factors and, naturally, the value and price of information vary considerably as was already
mentioned at the outset.

In short: our professionals are confronted with unstructured, heterogeneous, multi-
media information of different quality. Their problem is to find specific facts about well-
defined business sectors, over a given period of time and possibly restricted to a given geo-
graphical area. In most cases both internal and external information has to be taken into
account. In IR terms and with the presently available techniques this means that a series of
queries has to be performed on large multimedia collections. Each single query usually
depends on the result of the previous one and they form an entire iteration of queries.

.....

User's Information Need

Q 1 2 3 nQ Q Q

IR
System

Desired Information

2 3 n

Fig. 1: User submits sequence of small queries

Hans-Peter Frei

User interfaces for supporting this complex task must allow to keep track of naviga-
tional moves, partial results, and the query history. Such interfaces are emerging at the
present time [7]. They support the extraction of useful information from individual query
results and help in assembling partial results. The sought information still consists in part
of many pieces of semi-relevant information that were put together by the user (Fig. 1)

As mentioned before, the needs of a library user looking for a book on fly-fishing are
relatively simple compared to the needs of a professional confronted with today's
information jungle. A professional user needs extremely powerful evaluation procedures to
capture real problems, procedures that return facts rather than numerous partial query
results that have to be combined manually. Ideally, such procedures must accept inquiries
rather than queries and should be able to generate automatically a series of simple queries
where needed. Likewise, the results of simple queries should automatically be assembled
and turned into useful facts (Fig. 2).

.....

User's Information Need

Q 1 Q 2 Q m Q n

IR
System

Desired Information

Inquiry 1 Inquiry 2

Query Generator

Answer Analyser

Q m+1

Fig.2: User submits inquiries

The IR system of the future should therefore accept real user inquiries and return
answers that help these users to master today's information flood. Only in this way is it
assured that the value of information contributes optimally to the problem-solving process.

Information Retrieval - from Academic Research to Practical Applications

4 Quest for a Flexible IR Framework

From the needs pointed out above it becomes clear that we not only need more complex
systems but also a great deal of flexibility since it is difficult to devise an IR system that will
adhere to requirements not yet fully known at the time of its design. Implementing a new
IR system whenever the requirements change is neither practical nor economical.
Similarly, it is unfeasible to extend an existing traditional system to adhere to new require-
ments due to its inappropriate architecture and missing tools.

In other contexts, these problems have been solved by putting together subroutine or
code libraries that can be used by applications. Consider numerical or statistical analysis
[1] where a number of useful subroutine libraries emerged a long time ago and are now in
general use, such as NAG and IMSL. The goal of such libraries is to define, implement,
and put at the users' disposal collections of pieces of code, each of which constitutes the
implementation of a specific function. The functionality and interfaces of such subroutines
or procedures must be exactly defined and carefully documented for the application
programmers. Subroutine libraries have the advantage that proven algorithms can be used
and well-established code becomes part of the applications. The programmer just has to
choose the appropriate procedures—which is not trivial in all cases—but has neither to read
nor to fully understand the code that is invoked. It goes without saying that the
functionality and the interfaces have to be fully understood.

An alternative to subroutine libraries are frameworks. General application frame-
works, such as ET++ [12] or the Microsoft Foundation Class Library [9], are emerging at
the present time. In contrast to a code library, a framework is a program skeleton defining
the basic concepts of an application domain. This includes the definition of how individual
components cooperate. In other words, a framework not only contains specific algorithms
and their implementations, but it also defines the entire application architecture. Therefore,
a framework constitutes the major part of an application which can still be flexibly adapted
to specific requirements. In contrast, the programmer employing a code library is
confronted with a take-it-or-leave-it scenario: a subroutine can only be used if it has the
exact functionality required and, in addition, an interface that fits into the application under
development. Neither the functionality nor the interface can normally be adapted by the
application programmer. This is different when a framework with suitable generalizations
and abstractions is available. It can flexibly be adapted to the needs of the application and
therefore constitutes a much more flexible boundary to build on.

IR systems are usually not structured in such a way that they can easily be adapted to
the specific needs of a new application. This also holds for systems like INQUERY [3] or
SMART [2] whose code has occasionally been reused by others than their developers. In
most of these cases, the systems have been used for application areas similar to the ones
they were designed for. Therefore, either they could be used as they were or only small
adaptations were necessary. A more flexible approach was pursued with the object-
oriented class library ECLAIR [5] providing algorithms for automatic indexing of texts and
best-match retrieval. The goal of ECLAIR as a class library was mainly to provide IR
functionality in the form of implemented, reusable classes. The emphasis of a real
framework approach, on the other hand, is to provide an application skeleton that can be

Hans-Peter Frei

extended to suit specific situations mainly by exploiting the inheritance properties of
objects.

Another reason for adopting the framework approach in IR is that there is only little
consensus as to which functions have to be provided, which algorithms have to be used,
and in which way they have to be implemented in order to be of advantage to different IR
systems. As long as only single terms are derived from unstructured ASCII texts, one
could certainly find a simple way of providing an appropriate indexing function. However,
as pointed out in section 3, different kinds of input have to be considered, such as struc-
tured texts, tables, spreadsheets, and the like.

Finally, the framework approach is perfectly suited for a research situation where
different algorithms have to be developed and compared with each other. Classes of a
framework can easily be instantiated in turn or can even be exchanged, an ideal situation for
experimentation.

In cases such as the ones described above, the subroutine library approach becomes
far too restrictive and rather unsuited for the development of a flexible system. The IR
system we envisage should not only be adaptable to specific application areas but also to
requirements that may arise after the system has been deployed.

5 Design of an IR Framework, the FIRE Approach

The "Framework for Information Retrieval Applications", called FIRE, is designed as a
flexible and extensible framework for developing a wide range of specific IR applications
[11]. Among others, it has to provide a great deal of basic IR functionality for various
media and flexible modeling mechanisms suited to different document types and structures.
One of the problems to overcome is that it is largely unknown in advance which kind of
documents have to be managed in a specific application. In addition, we do not know how
these documents will be represented and what functionality will be required. Thus, a useful
IR framework must provide options for applying various indexing and retrieval models and
methods. Most importantly, the framework must allow to add new functionality when
necessary for specific applications.

Developing an application becomes chiefly a matter of extending and specializing the
framework in the direction of the application specification. This is done mainly by filling in
gaps or by providing application-specific functionality. In other words, instead of
programming components, the application developer largely selects and plugs together
functionality that is already part of the framework. A substantial difference to invoking
existing components from an emerging application is that a framework provides both the
thread of control and the architecture of the application.

FIRE is implemented in C++ using ETOS, an integration of the ET++ application
framework [12] and the object-oriented database system ObjectStore [8]. In other words,
FIRE takes advantage of a more general application framework, i.e. the developers of FIRE
profit from an architecture and functionality that others devised and implemented. FIRE
itself is also such an architecture and plays the same role for developers of IR systems that
ET++ plays for the FIRE developers: it shifts substantial parts of the application
development task from the developer to the framework. The developer mainly chooses

Information Retrieval - from Academic Research to Practical Applications

from alternatives that are already supported by the framework and only adds own compo-
nents when absolutely necessary. Meta information plays a crucial role in representing
such choices. Similar to the meta information already provided by ET++, other meta
information is supported by FIRE, such as the choice of indexing algorithms and parame-
ters.

When an application is executed, FIRE inspects meta information parameters to decide
which functionality has to be invoked. It is the task of the application developer to specify
values for these parameters. Default parameters are always available and can be overridden
at the framework, application, and user level.

Another important property of the FIRE design is the emphasis on extendibility, as it
is largely unknown what kind of functionality will be needed in a multi-media IR envi-
ronment. It must be possible to add both new media types and new functionality without
interfering with existing parts of the framework or with existing applications. If the core
framework only works on the interfaces of abstract classes, new concrete subclasses can be
added without changing the core framework.

The software architecture of a typical application developed with FIRE is depicted in
Fig. 3. Application-specific code fills gaps in the framework or extends it. The underlying
integration of ET++ and ObjectStore also provides functionality to FIRE that the developer
can profit from.

ObjectStoreET++

FIRE

Application code

Document collections
Indexes

Fig. 3: Architecture of a FIRE application

6 FIRE Architecture

6.1 A Glance at the FIRE Class Hierarchy

FIRE basically consists of a single-rooted object-oriented class hierarchy that is both large
and complex. For its sheer size and complexity it cannot be fully presented in the space
available here. Therefore, this chapter will solely convey a feeling for the structure of the
class hierarchy, explain how IR components are embedded, and give the rationale for
choosing this specific design.

Fig. 4 shows the class InformationObject that constitutes the root of the hierarchy as
well as a few of the most important subclasses. The root defines basic operations for man-

Hans-Peter Frei

aging and manipulating information units, such as create, remove, present, edit, etc. These
operations are abstract operations whose actual implementation is defined in concrete sub-
classes [11].

The subclasses of InformationObject such as ReprInfoUnit (document), InfoObject-
Element (data element), and Index contain further subclasses that model specific IR compo-
nents, in particular data and methods. Also the other classes of the framework represent
various forms of meta information and functionality for supporting entire applications. As
was explained in section 4, this support of entire applications is what mainly distinguishes a
framework from a code library. FIRE provides the outline of an IR application whereas a
code library would only supply subroutines which can be invoked by the application that
has to be designed and written from scratch.

InformationObject

InfoObjectElement

IOE-List

IOE-Set

IOE-PersonName IOE-Date

IOE-IntegerIOE-String . . .

. . .

Index

IDF 2Poisson

ReprInfoUnit

ReprText ReprPicture. . .

Fig. 4: Top part of the FIRE hierarchy

Consider the abstract class ReprInfoUnit. It controls the modeling of documents; its
concrete subclasses define how certain information types needed by an application are rep-
resented. If the type is text, the application developer first checks the framework for an
appropriate subclass for text. Since there is a class ReprText, the question is if its features
such as Title, Author, PublicationDate, etc., are suited to the application under de-
velopment. If they are not, a new text class would be devised which is then used—instead
of ReprText—by the particular application. Note that this new text class then forms part of
the framework and can be used by applications that are developed at a later point in time.

The features of ReprText in turn are taken from a collection of predefined data types
represented by another abstract class, in our case the class InfoObjectElement. At first
glance, this decoupling of document types (ReprInfoUnit) and data types (InfoObject-
Element) looks complicated. The reason is, however, a gain in flexibility. The subclasses
of ReprInfoUnit are relatively simple whereas the subclasses of InfoObjectElement repre-
sent media formats and can be quite elaborate. On the other hand, they represent the basic
building blocks for all kinds of complicated documents and can, therefore, be reused in
many contexts.

Information Retrieval - from Academic Research to Practical Applications

New information units may become necessary even after the deployment of an IR
system; they can easily be added as (relatively simple) subclasses to ReprInfoUnit. The
(relatively complicated) media formats have to be implemented just once whereafter the
corresponding subclasses of InfoObjectElement can be used over and over again by sub-
classes of ReprInfoUnit.

For every data type described in InfoObjectElement the framework contains special-
ized IR functionality, such as tokenizing, indexing, matching, etc. If there are no pictures
in the data collection, there are no instances of the subclass ReprPicture. Likewise, if the
data collection would contain speech and speech were not supported by the framework, a
subclass ReprSpeech would have to be added by the application developer. In this specific
case, also InfoObjectElement would presumably not contain speech-specific basic data
types, so that a few additional subclasses would have to be developed. Such newly added
subclasses are automatically available to every user of the framework just as any other
framework component. Most importantly, additions require no changes to the framework
core nor to any of the existing applications.

Therefore, a specific IR application can be developed by choosing and plugging to-
gether framework components. In case there is no component for a data type or no func-
tionality necessary for the application under development, some of the following actions
have to be taken:
• The needed document type does not exist: a new ReprInfoUnit subclass has to be im-

plemented, an easy job when the necessary data types are available as
InfoObjectElement subclasses.

• The needed media component does not exist: a new InfoObjectElement subclass has to
be implemented; depending on the complexitiy of the particular media, this can be a
rather demanding job.

• The desired weighting method does not exist: a concrete subclass of the abstract class
Index has to be developed.

6.2 Indexing and Weighting

Like many other classes belonging to the same level of the class hierarchy, also Index is an
abstract class. It does not provide specific IR functionality but solves general subtasks
necessary to manage indexing features and to compute RSVs.

Consider the method addIFs belonging to Index. It adds a set of indexing features to
an existing index. When doing so, this method also checks whether the feature to be added
is compatible with the already existing index, i.e. if the same indexing method was applied
to the newly arriving feature as was applied to the old ones. Another method of Index is
called update. It finally inserts the previously added indexing features into the index. The
two processes of adding and updating are separated because the actual insertion of indexing
features into an existing index can cause a great deal of computing and re-sorting of the ex-
isting index.

Another method called retrieve serves for retrieving information units by evaluating
single feature queries. This is again a subtask, since single feature queries usually occur as
parts of more complex queries. Such a compound query is decomposed into single feature
queries and the results of these single conditions are combined by a ReprInfoUnit object

Hans-Peter Frei

that computes the similarity between two information units, e.g. between a document and a
query.

Concrete subclasses of Index are responsible for assigning weights to features. Each
subclass supports a particular weighting scheme, such as Inverse Document Frequency
(IDF), discrimination weighting, etc. Note that these subclasses are implemented such that
the weighting schemes can be applied to any kind of feature. In other words, the same sub-
class IDF can be applied to stemmed keywords, to phonemes, to graphical features, and the
like. Hence, an IR application developer needs only to devise a new subclass of Index
when an entirely new weighting scheme is to be supported.

6.3 Present and Future Developments

Up until now the implementation focus was clearly on the infrastructure of the FIRE frame-
work which means that most of the basic information types are implemented, such as
string, text, integer, date, personname, speech, etc. In addition, a variety of stemming and
matching algorithms exist that support English and German text and speech. In the index-
ing part, simple hashing is supported that has been taken from ET++. The goal is to use
the ObjectStore indexes directly to increase efficiency.

Fireworks/SketchTrieve is a user interface to FIRE that was developed by our project
partner from Robert Gordon University, Aberdeen [7]. Another user interface also running
at the present time is a WWW/Netscape interface.

At this time, two small test applications are running on top of FIRE. One is an appli-
cation that handles the publicly available HCI bibliography of Ohio State University and
ACM SIGCHI, the other handles a set of about 400 speech documents of BBC Radio 4
news broadcasts.

The FIRE system so far consists of roughly 200 classes, about 100 of them con-
tributed by Fireworks/SketchTrieve. This amounts to more than 30,000 lines of code alto-
gether.

7 Conclusions

Despite the narrow scope of early IR research, a fair number of useful methods and algo-
rithms have been developed mainly for indexing, storing, and retrieving texts. In contrast
to former days, information has long lost its automatic association with text. In addition to
text there are graphics, image, speech, video, and mixtures of all these information types.
These 'new' information types gain significance not only in everyday life but also within
the professional realm of enterprises that are faced with today's information flood. As a
consequence, the methods and algorithms devised in the early days of IR have to be recon-
sidered, adapted, or even re-developed.

New IR methods and algorithms are now emerging because of the efforts of both IT
professionals in companies and IR researches in academia. The IR systems emerging must
have the ability to cope with hypermedia information, e.g. hypertexts and a multitude of
different media. The problem in enterprises is often that it is unknown at the time of pur-

Information Retrieval - from Academic Research to Practical Applications

chasing or devising new systems what kind of information must be considered and—above
all—in what form this information will be available when the IR system is in operation.

For these reasons, we started to develop an IR framework that offers not only basic IR
functionality but also the thread of control and the structure of the yet unknown IR applica-
tion to be devised. This framework, called FIRE, allows a great deal of flexibility to a sys-
tem developer and provides, at the same time, maximum support.

Acknowledgments

I would like to thank Gabriele Sonnenberger and Tore Bratvold who designed the FIRE
framework in cooperation with the IR group of Robert Gordon University, Aberdeen,
Scotland. Many students contributed valuable parts to the implementation of FIRE in the
course of internships at UBILAB. Particular thanks go to Tore Bratvold who read earlier
versions of this paper and whose comments have greatly improved the quality of the final
product.

References

[1] Boisvert R F, Howe S E, Kahaner D K: GAMS: A Framework for the Management
of Scientific Software. ACM Trans on Math Software, Vol 11, No 4, 1985, pp 313-
355.

[2] Buckley Ch, Salton G, Allan J, Singhal A: Automatic query expansion using
SMART: TREC-3. In: Harman D K (ed.): Proc 3rd Text Retrieval Conf (TREC-3),
NIST Special Publication 500-225, 1995.

[3] Callan J P, Croft W B, Harding S M: The INQUERY Retrieval System. Proc 3rd
Int Conf on Database and Expert Systems Applications, 1992, pp 78-83.

[4] Frei H P, Stieger D: The Use of Semantic Links in Hypertext Information Retrieval.
Information Processing & Management, Vol 31, No. 1, 1995, pp 1-13.

[5] Harper D J, Walker A M: ECLAIR, an Extensible Class Library for Information Re-
trieval. The Computer Journal, Vol 35, No 3, 1992, pp 256-267.

[6] Harman D: The TREC Conferences. Proc HIM '95 (Hypertext - Information Retrie-
val - Multimedia), UVK Universitätsverlag Konstanz, 1995, pp 9-28.

[7] Hendry D G, Harper D J: Coordinating Information-Seeking on Interactive Displays.
In: Collier M and Arnold K: Proc 2nd Int Conf on Electronic Library and Visual In-
formation Research. Aslib, London, 1995, pp 127-136.

[8] Lamb Ch, Landis G, Orenstein J, Weinreb D: The ObjectStore Database System.
CACM, Vol 34, No 10, 1991, pp 50-63.

Hans-Peter Frei

[9] Microsoft: Programming with MFC and Win32. Microsoft Press, Redmond, WA,
1994.

[10] Ogle V E, Stonebraker M: Chabot: Retrieval from a Relational Database of Images.
IEEE Computer, Vol 28, No 9, September 1995, pp 40-48.

[11] Sonnenberger G, Frei H P: Design of a Reusable IR Framework. Proc 18th Int
ACM SIGIR Conf, ACM Press, New York, July 1995, pp 49-57.

[12] Weinand A, Gamma E: ET++, a Portable, Homogeneous Class Library and Applica-
tion Framework. In: Bischofberger W R, Frei H P (eds): Proc UBILAB Conf '94,
Universitätsverlag, Konstanz, 1994, pp 66-92.

